Gated Ladder-Shaped Feature Pyramid Network for Object Detection in Optical Remote Sensing Images

被引:11
|
作者
Liu, Nanqing [1 ]
Celik, Turgay [1 ,2 ]
Li, Heng-Chao [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 610031, Peoples R China
[2] Univ Witwatersrand, Sch Elect & Informat Engn, ZA-2000 Johannesburg, South Africa
关键词
Feature extraction; Remote sensing; Logic gates; Convolution; Optical imaging; Fuses; Detectors; Deep learning; feature pyramid network (FPN); object detection; optical remote sensing images;
D O I
10.1109/LGRS.2020.3046137
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents a new feature pyramid network (FPN) called the gated ladder-shaped FPN (GLFPN) to construct more representative feature pyramids for detecting objects of different sizes in optical remote sensing images. We first use convolution and concatenation operations to fuse three base features extracted by a ResNet backbone. We then obtain multilevel features from these base features. Finally, we use a selective gate to fuse features from multiple levels with equivalent sizes. To evaluate the effectiveness of the proposed GLFPN, we integrate it into the RetinaNet architecture by replacing the conventional FPN. The experimental results on two optical remote sensing image data sets show that the proposed method outperforms the methods compared in this letter.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Gated Path Aggregation Feature Pyramid Network for Object Detection in Remote Sensing Images
    Zheng, Yuchao
    Zhang, Xinxin
    Zhang, Rui
    Wang, Dahan
    REMOTE SENSING, 2022, 14 (18)
  • [2] Laplacian Feature Pyramid Network for Object Detection in VHR Optical Remote Sensing Images
    Zhang, Wenhua
    Jiao, Licheng
    Li, Yuxuan
    Huang, Zhongjian
    Wang, Haoran
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Discriminative Feature Pyramid Network For Object Detection In Remote Sensing Images
    Zhu, Xiaoqian
    Zhang, Xiangrong
    Zhang, Tianyang
    Zhu, Peng
    Tang, Xu
    Li, Chen
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [4] Multipatch Feature Pyramid Network for Weakly Supervised Object Detection in Optical Remote Sensing Images
    Shamsolmoali, Pourya
    Chanussot, Jocelyn
    Zareapoor, Masoumeh
    Zhou, Huiyu
    Yang, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Semantics reused context feature pyramid network for object detection in remote sensing images
    Zhang, Li
    Guo, Yong
    Wang, Xinyue
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (03)
  • [6] FRPNet: A Feature-Reflowing Pyramid Network for Object Detection of Remote Sensing Images
    Wang, Jingyu
    Wang, Yezi
    Wu, Yulin
    Zhang, Ke
    Wang, Qi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Feature Enhancement Network for Object Detection in Optical Remote Sensing Images
    Cheng, Gong
    Lang, Chunbo
    Wu, Maoxiong
    Xie, Xingxing
    Yao, Xiwen
    Han, Junwei
    JOURNAL OF REMOTE SENSING, 2021, 2021
  • [8] A Dense Feature Pyramid Network for Remote Sensing Object Detection
    Sun, Yu
    Liu, Wenkai
    Gao, Yangte
    Hou, Xinghai
    Bi, Fukun
    APPLIED SCIENCES-BASEL, 2022, 12 (10):
  • [9] Gated Feature Pyramid Network for Object Detection
    Xie, Xuemei
    Liao, Quan
    Ma, Lihua
    Jin, Xing
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 199 - 208
  • [10] Info-FPN: An Informative Feature Pyramid Network for object detection in remote sensing images
    Chen, Silin
    Zhao, Jiaqi
    Zhou, Yong
    Wang, Hanzheng
    Yao, Rui
    Zhang, Lixu
    Xue, Yong
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214