Double hierarchical generalized linear models

被引:150
|
作者
Lee, Y
Nelder, JA
机构
[1] Seoul Natl Univ, Coll Nat Sci, Dept Stat, Seoul 151747, South Korea
[2] Imperial Coll London, London, England
基金
英国经济与社会研究理事会;
关键词
generalized linear models; heavy-tailed distribution; hierarchical generalized linear models; hierarchical likelihood; h-likelihood; joint generalized linear models; random-effect models; restricted maximum likelihood estimator; stochastic volatility models;
D O I
10.1111/j.1467-9876.2006.00538.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a class of double hierarchical generalized linear models in which random effects can be specified for both the mean and dispersion. Heteroscedasticity between clusters can be modelled by introducing random effects in the dispersion model, as is heterogeneity between clusters in the mean model. This class will, among other things, enable models with heavy-tailed distributions to be explored, providing robust estimation against outliers. The h-likelihood provides a unified framework for this new class of models and gives a single algorithm for fitting all members of the class. This algorithm does not require quadrature or prior probabilities.
引用
收藏
页码:139 / 167
页数:29
相关论文
共 50 条
  • [1] Double hierarchical generalized linear models - Discussion
    MacKenzie, G
    Firth, D
    Rigby, RA
    Stasinopoulos, DM
    Payne, R
    Senn, S
    Browne, WJ
    Goldstein, H
    del Castillo, J
    Feddag, M
    Ha, ID
    Kim, D
    Oh, HS
    Lawson, AB
    Piegorsch, WW
    Molenberghs, G
    Verbeke, G
    Yau, KKW
    Yu, KM
    Mamon, R
    Zhang, ZZ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2006, 55 : 167 - 185
  • [2] Hierarchical generalized linear models
    Lee, Y
    Nelder, JA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (04): : 619 - 656
  • [3] Modelling random effect variance with double hierarchical generalized linear models
    Lee, Youngjo
    Noh, Maengseok
    [J]. STATISTICAL MODELLING, 2012, 12 (06) : 487 - 502
  • [4] Hierarchical generalized linear models - Discussion
    Engel, B
    Keen, A
    Clayton, D
    Londford, NT
    Kuba, J
    Firth, D
    Draper, D
    Atkinson, AC
    Raab, GM
    Parpia, T
    Choy, STB
    Smith, AFM
    Dale, JR
    Shephard, N
    Ball, RD
    Breslow, NE
    Ekholm, A
    Gelman, A
    Langford, IH
    Morris, CN
    Preece, DA
    Seu, PK
    Smith, RL
    Thompson, R
    Walker, SG
    Mallick, BK
    Lee, Y
    Nelder, JA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1996, 58 (04) : 656 - 678
  • [5] SRC-Stat Package for Fitting Double Hierarchical Generalized Linear Models
    Noh, Maengseok
    Ha, Il Do
    Lee, Youngjo
    Lim, Johan
    Lee, Jaeyong
    Oh, Heeseok
    Shin, Dongwan
    Lee, Sanggoo
    Seo, Jinuk
    Park, Yonhtae
    Cho, Sungzoon
    Park, Jonghun
    Kim, Youkyung
    You, Kyungsang
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2015, 28 (02) : 343 - 351
  • [6] Interpreting hierarchical linear and hierarchical generalized linear models with slopes as outcomes
    Tate, R
    [J]. JOURNAL OF EXPERIMENTAL EDUCATION, 2004, 73 (01): : 71 - 95
  • [7] Measuring the complexity of generalized linear hierarchical models
    Lu, Haolan
    Hodges, James S.
    Carlin, Bradley R.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (01): : 69 - 87
  • [8] Hierarchical Modeling Using Generalized Linear Models
    Kumar, Naveen
    Mastrangelo, Christina
    Montgomery, Doug
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2011, 27 (06) : 835 - 842
  • [9] On diagnostics in double generalized linear models
    Paula, Gilberto A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 68 : 44 - 51
  • [10] Hierarchical Generalized Linear Models for Multiregional Clinical Trials
    Park, Junhui
    Kang, Seung-Ho
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2022, 14 (03): : 358 - 367