Modelling random effect variance with double hierarchical generalized linear models

被引:15
|
作者
Lee, Youngjo [1 ]
Noh, Maengseok [2 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151742, South Korea
[2] Pukyong Natl Univ, Dept Stat, Pusan 608737, South Korea
基金
新加坡国家研究基金会;
关键词
Double hierarchical generalized linear models; hierarchical generalized linear models; hierarchical likelihood; random effects; LIKELIHOOD RATIO TESTS; INFORMATION; INFERENCE;
D O I
10.1177/1471082X12460132
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Random-effect models are becoming increasingly popular in the analysis of data. Lee and Nelder (2006) introduced double hierarchical generalized linear models (DHGLMs) in which not only the mean but also the residual variance (overdispersion) can be further modelled as random-effect models. In this article, we introduce DHGLMs that allow random-effect models for both the variances of random effects and the residual variance. We show how to use this general model class for the analysis of data and discuss how to select the best fitting model using the likelihood and various model-checking plots.
引用
收藏
页码:487 / 502
页数:16
相关论文
共 50 条
  • [1] Double hierarchical generalized linear models
    Lee, Y
    Nelder, JA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2006, 55 : 139 - 167
  • [2] Genetic heterogeneity of residual variance - estimation of variance components using double hierarchical generalized linear models
    Lars Rönnegård
    Majbritt Felleki
    Freddy Fikse
    Herman A Mulder
    Erling Strandberg
    [J]. Genetics Selection Evolution, 42
  • [3] Genetic heterogeneity of residual variance - estimation of variance components using double hierarchical generalized linear models
    Roennegard, Lars
    Felleki, Majbritt
    Fikse, Freddy
    Mulder, Herman A.
    Strandberg, Erling
    [J]. GENETICS SELECTION EVOLUTION, 2010, 42
  • [4] Double hierarchical generalized linear models - Discussion
    MacKenzie, G
    Firth, D
    Rigby, RA
    Stasinopoulos, DM
    Payne, R
    Senn, S
    Browne, WJ
    Goldstein, H
    del Castillo, J
    Feddag, M
    Ha, ID
    Kim, D
    Oh, HS
    Lawson, AB
    Piegorsch, WW
    Molenberghs, G
    Verbeke, G
    Yau, KKW
    Yu, KM
    Mamon, R
    Zhang, ZZ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2006, 55 : 167 - 185
  • [5] Meta-analysis by random effect modelling in generalized linear models
    Aitkin, M
    [J]. STATISTICS IN MEDICINE, 1999, 18 (17-18) : 2343 - 2351
  • [6] Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models
    Felleki, M.
    Lee, D.
    Lee, Y.
    Gilmour, A. R.
    Ronnegard, L.
    [J]. GENETICS RESEARCH, 2012, 94 (06) : 307 - 317
  • [7] Joint hierarchical generalized linear models with multivariate Gaussian random effects
    Molas, Marek
    Noh, Maengseok
    Lee, Youngjo
    Lesaffre, Emmanuel
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 68 : 239 - 250
  • [8] HIERARCHICAL SELECTION OF FIXED AND RANDOM EFFECTS IN GENERALIZED LINEAR MIXED MODELS
    Hui, Francis K. C.
    Mueller, Samuel
    Welsh, A. H.
    [J]. STATISTICA SINICA, 2017, 27 (02) : 501 - 518
  • [9] Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models
    Mulder, Han A.
    Ronnegard, Lars
    Fikse, W. Freddy
    Veerkamp, Roel F.
    Strandberg, Erling
    [J]. GENETICS SELECTION EVOLUTION, 2013, 45
  • [10] Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models
    Han A Mulder
    Lars Rönnegård
    W Freddy Fikse
    Roel F Veerkamp
    Erling Strandberg
    [J]. Genetics Selection Evolution, 45