Hierarchical Generalized Linear Models for Multiregional Clinical Trials

被引:2
|
作者
Park, Junhui [1 ]
Kang, Seung-Ho [1 ]
机构
[1] Yonsei Univ, Dept Stat & Data Sci, 262 Seongsanno, Seoul 120749, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Bernoulli distribution; Between-cluster variability; Exponential family; Generalized linear mixed model; Random coefficient model; SAMPLE-SIZE; CONSISTENCY ASSESSMENT; JAPANESE PATIENTS; DESIGN; REGIONS;
D O I
10.1080/19466315.2020.1862702
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiregional clinical trials have a hierarchical data structure because several regions form a patient population and individual patients are nested within their own regions. Data are obtained from two different levels: regions and patients. To incorporate such a hierarchical structure, hierarchical linear models were proposed for the response variables following a normal distribution by Kim and Kang. In this article, we extend the hierarchical linear models to propose hierarchical generalized linear models (HGLMs) so that the response variables can follow the exponential family. We describe the details of the model when the response variable follows the Bernoulli distribution and the Poisson distribution. Simulation studies show that the empirical powers of the HGLM are greater than random effects model when region-level covariates are incorporated.
引用
收藏
页码:358 / 367
页数:10
相关论文
共 50 条
  • [1] Hierarchical Linear Models for Multiregional Clinical Trials
    Kim, Saemina
    Kang, Seung-Ho
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2020, 12 (03): : 334 - 343
  • [2] Control of Frequentist type I error rates in hierarchical linear models for multiregional clinical trials using a Bayesian method
    Kim, Jeewuan
    Kang, Seung-Ho
    Jin, Ick Hoon
    Park, Junhui
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [3] Hierarchical generalized linear models
    Lee, Y
    Nelder, JA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (04): : 619 - 656
  • [4] Hierarchical generalized linear models - Discussion
    Engel, B
    Keen, A
    Clayton, D
    Londford, NT
    Kuba, J
    Firth, D
    Draper, D
    Atkinson, AC
    Raab, GM
    Parpia, T
    Choy, STB
    Smith, AFM
    Dale, JR
    Shephard, N
    Ball, RD
    Breslow, NE
    Ekholm, A
    Gelman, A
    Langford, IH
    Morris, CN
    Preece, DA
    Seu, PK
    Smith, RL
    Thompson, R
    Walker, SG
    Mallick, BK
    Lee, Y
    Nelder, JA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1996, 58 (04) : 656 - 678
  • [5] Double hierarchical generalized linear models
    Lee, Y
    Nelder, JA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2006, 55 : 139 - 167
  • [6] Interpreting hierarchical linear and hierarchical generalized linear models with slopes as outcomes
    Tate, R
    [J]. JOURNAL OF EXPERIMENTAL EDUCATION, 2004, 73 (01): : 71 - 95
  • [7] Double hierarchical generalized linear models - Discussion
    MacKenzie, G
    Firth, D
    Rigby, RA
    Stasinopoulos, DM
    Payne, R
    Senn, S
    Browne, WJ
    Goldstein, H
    del Castillo, J
    Feddag, M
    Ha, ID
    Kim, D
    Oh, HS
    Lawson, AB
    Piegorsch, WW
    Molenberghs, G
    Verbeke, G
    Yau, KKW
    Yu, KM
    Mamon, R
    Zhang, ZZ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2006, 55 : 167 - 185
  • [8] Measuring the complexity of generalized linear hierarchical models
    Lu, Haolan
    Hodges, James S.
    Carlin, Bradley R.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (01): : 69 - 87
  • [9] Hierarchical Modeling Using Generalized Linear Models
    Kumar, Naveen
    Mastrangelo, Christina
    Montgomery, Doug
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2011, 27 (06) : 835 - 842
  • [10] Hierarchical Generalized Linear Models for the Analysis of Judge Ratings
    Muckle, Timothy J.
    Karabatsos, George
    [J]. JOURNAL OF EDUCATIONAL MEASUREMENT, 2009, 46 (02) : 198 - 219