Kinetics of field-induced phase separation of a magnetic colloid under rotating magnetic fields

被引:5
|
作者
Raboisson-Michel, M. [1 ,2 ]
Campos, J. Queiros [1 ]
Schaub, S. [3 ]
Zubarev, A. [4 ,5 ]
Verger-Dubois, G. [2 ]
Kuzhir, P. [1 ]
机构
[1] Univ Cote dAzur, Inst Phys Nice, CNRS UMR 7010, Parc Valrose, F-06108 Nice, France
[2] Axlepios Biomed, 1ere Ave 5eme Rue, F-06510 Carros, France
[3] Sorbonne Univ, CNRS, Dev Biol Lab LBDV, F-06234 Villefranche Sur Mer, France
[4] Ural Fed Univ, Inst Nat Sci & Math, Theoret & Math Phys Dept, Lenin Ave 51, Ekaterinburg 620083, Russia
[5] Russian Acad Sci, Ural Branch, MN Mikheev Inst Met Phys, Ekaterinburg, Russia
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 15期
基金
俄罗斯科学基金会;
关键词
NANOPARTICLES; FLUID; COALESCENCE; PARTICLES;
D O I
10.1063/5.0023706
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper is focused on the experimental and theoretical study of the phase separation of a magnetic nanoparticle suspension under rotating magnetic fields in a frequency range, 5 Hz <= nu <= 25 Hz, relevant for several biomedical applications. The phase separation is manifested through the appearance of needle-like dense particle aggregates synchronously rotating with the field. Their size progressively increases with time due to the absorption of individual nanoparticles (aggregate growth) and coalescence with neighboring aggregates. The aggregate growth is enhanced by the convection of nanoparticles toward rotating aggregates. The maximal aggregate length, L-max proportional to nu (-2), is limited by fragmentation arising as a result of their collisions. Experimentally, the aggregate growth and coalescence occur at a similar timescale, similar to 1 min, weakly dependent on the field frequency. The proposed theoretical model provides a semi-quantitative agreement with the experiments on the average aggregate size, aggregation timescale, and size distribution function without any adjustable parameter.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] CONSTITUTIVE MODELING OF MAGNETIC FIELD-INDUCED PHASE TRANSFORMATION IN NIMNCOIN MAGNETIC SHAPE MEMORY ALLOYS
    Lagoudas, Dimitris C.
    Basaran, Burak
    Haldar, Krishnendu
    Karaman, Ibrahim
    SMASIS2009, VOL 1, 2009, : 317 - 324
  • [32] Magnetic field-induced martensitic phase transformation in magnetic shape memory alloys: Modeling and experiments
    Haldar, Krishnendu
    Lagoudas, Dimitris C.
    Karaman, Ibrahim
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 69 : 33 - 66
  • [33] FIELD-INDUCED MAGNETIC PHASE-TRANSITIONS - MODELS FOR COMPETING INTERACTIONS
    WOLF, WP
    PHYSICA A, 1991, 177 (1-3): : 253 - 259
  • [34] Magnetic field-induced entropy change in phase-separated manganites
    Liu, G. J.
    Sun, J. R.
    Wang, J. Z.
    Shen, B. G.
    APPLIED PHYSICS LETTERS, 2006, 89 (22)
  • [35] Kinetics of ferrocolloid separation in magnetic field
    Zubarev, AY
    Ivanov, AO
    DOKLADY AKADEMII NAUK, 1996, 351 (02) : 181 - 184
  • [36] Field-induced magnetic phase transitions in the Yafet-Kittel model
    N. P. Kolmakova
    S. A. Kolonogii
    M. Yu. Nekrasova
    R. Z. Levitin
    Physics of the Solid State, 1999, 41 : 1649 - 1651
  • [37] Magnetic field-induced phase transitions in domain boundaries of rhombic antiferromagnetics
    Bogdanov, AN
    Puzynya, AI
    FIZIKA TVERDOGO TELA, 1996, 38 (07): : 2072 - 2082
  • [38] Field-induced magnetic phase transitions in the Yafet-Kittel model
    Kolmakova, NP
    Kolonogii, SA
    Nekrasova, MY
    Levitin, RZ
    PHYSICS OF THE SOLID STATE, 1999, 41 (10) : 1649 - 1651
  • [39] Magnetic field-induced density wave transition in a τ-phase organic conductor
    Graf, D
    Balicas, L
    Brooks, JS
    Mielke, C
    Papavassiliou, GC
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2002, 16 (20-22): : 3105 - 3108
  • [40] Field-induced magnetic reorientation in ultrathin ferromagnetic films: Phase diagrams
    Ilkovic, V.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (04): : 979 - 982