Kinetics of field-induced phase separation of a magnetic colloid under rotating magnetic fields

被引:5
|
作者
Raboisson-Michel, M. [1 ,2 ]
Campos, J. Queiros [1 ]
Schaub, S. [3 ]
Zubarev, A. [4 ,5 ]
Verger-Dubois, G. [2 ]
Kuzhir, P. [1 ]
机构
[1] Univ Cote dAzur, Inst Phys Nice, CNRS UMR 7010, Parc Valrose, F-06108 Nice, France
[2] Axlepios Biomed, 1ere Ave 5eme Rue, F-06510 Carros, France
[3] Sorbonne Univ, CNRS, Dev Biol Lab LBDV, F-06234 Villefranche Sur Mer, France
[4] Ural Fed Univ, Inst Nat Sci & Math, Theoret & Math Phys Dept, Lenin Ave 51, Ekaterinburg 620083, Russia
[5] Russian Acad Sci, Ural Branch, MN Mikheev Inst Met Phys, Ekaterinburg, Russia
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 15期
基金
俄罗斯科学基金会;
关键词
NANOPARTICLES; FLUID; COALESCENCE; PARTICLES;
D O I
10.1063/5.0023706
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper is focused on the experimental and theoretical study of the phase separation of a magnetic nanoparticle suspension under rotating magnetic fields in a frequency range, 5 Hz <= nu <= 25 Hz, relevant for several biomedical applications. The phase separation is manifested through the appearance of needle-like dense particle aggregates synchronously rotating with the field. Their size progressively increases with time due to the absorption of individual nanoparticles (aggregate growth) and coalescence with neighboring aggregates. The aggregate growth is enhanced by the convection of nanoparticles toward rotating aggregates. The maximal aggregate length, L-max proportional to nu (-2), is limited by fragmentation arising as a result of their collisions. Experimentally, the aggregate growth and coalescence occur at a similar timescale, similar to 1 min, weakly dependent on the field frequency. The proposed theoretical model provides a semi-quantitative agreement with the experiments on the average aggregate size, aggregation timescale, and size distribution function without any adjustable parameter.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Field-induced confinement in (TMTSF)2ClO4  under accurately aligned magnetic fields
    N. Joo
    P. Auban-Senzier
    C. R. Pasquier
    S. Yonezawa
    R. Higashinaka
    Y. Maeno
    S. Haddad
    S. Charfi-Kaddour
    M. Héritier
    K. Bechgaard
    D. Jérome
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 52 : 337 - 343
  • [22] Field-induced SDW phase diagram of (TMTSF)2PF6 at high magnetic fields
    Matsunaga, N
    Yamashita, K
    Oota, T
    Nomura, K
    Sasaki, T
    Hanajiri, T
    Yamada, J
    Nakatsuji, S
    PHYSICA B-CONDENSED MATTER, 2003, 329 : 1154 - 1155
  • [23] Relationship Between Magnetic Field-Induced Entropy Change and Magnetic Field
    Dong Qiaoyan~(1
    2. Department of Physics
    Journal of Rare Earths, 2005, (04) : 519 - 519
  • [24] EFFECT OF FIELD-INDUCED MAGNETIC ANISOTROPY
    金汉民
    I.OKAMOTO
    M.TAKAHASHI
    Science China Mathematics, 1986, (06) : 619 - 630
  • [25] Field-induced instabilities in a magnetic fluid
    Luo, WL
    Du, TD
    Huang, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 201 : 88 - 90
  • [26] Field-induced magnetic structures in UNiGe
    K. Prokeš
    H. Nakotte
    E. Brück
    P.F. de Châtel
    V. Sechovský
    Applied Physics A, 2002, 74 : s757 - s759
  • [27] Field-induced magnetic structures in UNiGe
    Prokes, K
    Nakotte, H
    Brück, E
    de Châtel, PF
    Sechovsky, V
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (Suppl 1): : S757 - S759
  • [28] The field-induced magnetic structure in UIrGe
    Prokes, K.
    Sechovsky, V.
    de Boer, F. R.
    Andreev, A. V.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (10)
  • [29] Field-induced anisotropy in a magnetic liquid
    Johansson, C
    Hanson, M
    Lundqvist, P
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1996, 157 : 599 - 600
  • [30] DIPOLAR FIELD-EFFECT ON MAGNETIC FIELD-INDUCED PHASE-TRANSITIONS
    SZYMCZAK, H
    SZYMCZAK, R
    PHYSICA B, 1992, 177 (1-4): : 207 - 210