LEARNING ABOUT SYSTEMS USING MACHINE LEARNING: TOWARDS MORE DATA-DRIVEN FEEDBACK LOOPS

被引:0
|
作者
Elbattah, Mahmoud [1 ]
Molloy, Owen [1 ]
机构
[1] Natl Univ Ireland Galway, Coll Engn & Informat, Univ Rd, Galway, Ireland
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Machine Learning (ML) has demonstrated great potentials for constructing new knowledge, or improving already established knowledge. Reflecting this trend, the paper lends support to the discussion of why and how should ML support the practice of modeling and simulation? Subsequently, the study goes through a use case in relation to healthcare, which aims to provide a practical perspective for integrating simulation models with data-driven insights learned by ML models. Through a realistic scenario, we utilise ML clustering in order to learn about the system's structure and behaviour under study. The insights gained by the clustering model are then utilised to build a System Dynamics model. Recognizing its current limitations, the study is believed to serve as a kernel towards promoting further integration between simulation modeling and ML.
引用
收藏
页码:1539 / 1550
页数:12
相关论文
共 50 条
  • [21] Data-Driven Modeling of Switched Dynamical Systems via Extreme Learning Machine
    Xiang, Weiming
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 852 - 857
  • [22] Unsupervised machine learning for data-driven representations of reactions
    Sirumalla, Sai Krishna
    West, Richard
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [23] Anomaly analytics in data-driven machine learning applications
    Azimi, Shelernaz
    Pahl, Claus
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024, : 155 - 180
  • [24] Machine Learning Descriptors for Data-Driven Catalysis Study
    Mou, Li-Hui
    Han, TianTian
    Smith, Pieter E. S.
    Sharman, Edward
    Jiang, Jun
    ADVANCED SCIENCE, 2023, 10 (22)
  • [25] Machine Learning for Data-Driven Discovery The Rise and Relevance
    Sengupta, Partho P.
    Shrestha, Sirish
    JACC-CARDIOVASCULAR IMAGING, 2019, 12 (04) : 690 - 692
  • [26] Chinese diabetes datasets for data-driven machine learning
    Qinpei Zhao
    Jinhao Zhu
    Xuan Shen
    Chuwen Lin
    Yinjia Zhang
    Yuxiang Liang
    Baige Cao
    Jiangfeng Li
    Xiang Liu
    Weixiong Rao
    Congrong Wang
    Scientific Data, 10
  • [27] Data-driven models in machine learning for crime prediction
    Wawrzyniak, Zbigniew M.
    Jankowski, Stanislaw
    Szczechla, Eliza
    Szymanski, Zbigniew
    Pytlak, Radoslaw
    Michalak, Pawel
    Borowik, Grzegorz
    2018 26TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG 2018), 2018,
  • [28] Chinese diabetes datasets for data-driven machine learning
    Zhao, Qinpei
    Zhu, Jinhao
    Shen, Xuan
    Lin, Chuwen
    Zhang, Yinjia
    Liang, Yuxiang
    Cao, Baige
    Li, Jiangfeng
    Liu, Xiang
    Rao, Weixiong
    Wang, Congrong
    SCIENTIFIC DATA, 2023, 10 (01)
  • [29] Constructing Dependable Data-Driven Software With Machine Learning
    Pahl, Claus
    Azimi, Shelernaz
    IEEE SOFTWARE, 2021, 38 (06) : 88 - 97
  • [30] The rise of data-driven microscopy powered by machine learning
    Morgado, Leonor
    Gomez-de-Mariscal, Estibaliz
    Heil, Hannah S.
    Henriques, Ricardo
    JOURNAL OF MICROSCOPY, 2024, 295 (02) : 85 - 92