Food Places Classification in Egocentric Images Using Siamese Neural Networks

被引:0
|
作者
Kamal Sarker, Md Mostafa [1 ]
Furruka Banu, Syeda [2 ]
Rashwan, Hatem A. [1 ]
Abdel-Nasser, Mohamed [1 ]
Kumar Singh, Vivek [1 ]
Chambon, Sylvie [3 ]
Radeva, Petia [4 ]
Puig, Domenec [1 ]
机构
[1] Rovira & Virgili Univ, DEIM, Tarragona 43007, Spain
[2] Rovira & Virgili Univ, ETSEQ, Tarragona 43007, Spain
[3] Univ Toulouse, INP ENSEEIHT, CNRS IRIT, F-31071 Toulouse, France
[4] Univ Barcelona, Dept Math, Barcelona 08007, Spain
关键词
Egocentric vision; food pattern classification; siamese neural networks; one-shot learning; scene classification;
D O I
10.3233/FAIA190117
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Wearable cameras are become more popular in recent years for capturing the unscripted moments of the first-person that help to analyze the users lifestyle. In this work, we aim to recognize the places related to food in egocentric images during a day to identify the daily food patterns of the first-person. Thus, this system can assist to improve their eating behavior to protect users against food-related diseases. In this paper, we use Siamese Neural Networks to learn the similarity between images from corresponding inputs for one-shot food places classification. We tested our proposed method with 'MiniEgoFoodPlaces' with 15 food related places. The proposed Siamese Neural Networks model with MobileNet achieved an overall classification accuracy of 76.74% and 77.53% on the validation and test sets of the "MiniEgoFoodPlaces" dataset, respectively outperforming with the base models, such as ResNet50, InceptionV3, and InceptionResNetV2.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 50 条
  • [11] Classification of Hyperspectral Images Using Conventional Neural Networks
    V. I. Kozik
    E. S. Nezhevenko
    Optoelectronics, Instrumentation and Data Processing, 2021, 57 : 123 - 131
  • [12] Interpretable Diagnosis of Breast Cancer from Histological Images Using Siamese Neural Networks
    Hradel, Dominik
    Hudec, Lukas
    Benesova, Wanda
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [13] Snake Image Classification using Siamese Networks
    Abeysinghe, Chamath
    Welivita, Anuradha
    Perera, Indika
    ICGSP '19 - PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON GRAPHICS AND SIGNAL PROCESSING, 2019, : 8 - 12
  • [14] Robust Signal Classification Using Siamese Networks
    Langford, Zachary
    Eisenbeiser, Logan
    Vondal, Matthew
    PROCEEDINGS OF THE 2019 ACM WORKSHOP ON WIRELESS SECURITY AND MACHINE LEARNING (WISEML '19), 2019, : 1 - 5
  • [15] Signature Recognition using Siamese Neural Networks
    Krishna, Voruganti Ajay
    Reddy, AtthapuramAkshay
    Nagajyothi, D.
    2021 IEEE INTERNATIONAL CONFERENCE ON MOBILE NETWORKS AND WIRELESS COMMUNICATIONS (ICMNWC), 2021,
  • [16] BINARY HASHING USING SIAMESE NEURAL NETWORKS
    Jose, Abin
    Yan, Shen
    Heisterklaus, Iris
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2916 - 2920
  • [17] Siamese Convolutional Neural Networks for Remote Sensing Scene Classification
    Liu, Xuning
    Zhou, Yong
    Zhao, Jiaqi
    Yao, Rui
    Liu, Bing
    Zheng, Yi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) : 1200 - 1204
  • [18] Multitarget Tracking Using Siamese Neural Networks
    An, Na
    Yan, Wei Qi
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (02)
  • [19] Classification of Images Acquired with Colposcopy Using Artificial Neural Networks
    Simoes, Priscyla W.
    Izumi, Narjara B.
    Casagrande, Ramon S.
    Venson, Ramon
    Veronezi, Carlos D.
    Moretti, Gustavo P.
    da Rocha, Edroaldo L.
    Cechinel, Cristian
    Ceretta, Luciane B.
    Comunello, Eros
    Martins, Paulo J.
    Casagrande, Rogerio A.
    Snoeyer, Maria L.
    Manenti, Sandra A.
    CANCER INFORMATICS, 2014, 13 : 119 - 124
  • [20] MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS
    BISCHOF, H
    SCHNEIDER, W
    PINZ, AJ
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (03): : 482 - 490