A Context-Aware EEG Headset System for Early Detection of Driver Drowsiness

被引:67
|
作者
Li, Gang [1 ]
Chung, Wan-Young [1 ]
机构
[1] Pukyong Natl Univ, Dept Elect Engn, Busan 608737, South Korea
基金
新加坡国家研究基金会;
关键词
driver drowsiness detection; EEG; gyroscope; slightly drowsy events; mobile application; BRAIN-COMPUTER-INTERFACE; PERFORMANCE; WIRELESS; SLEEPINESS; DURATION; SENSORS; FATIGUE; SIGNALS;
D O I
10.3390/s150820873
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Driver drowsiness is a major cause of mortality in traffic accidents worldwide. Electroencephalographic (EEG) signal, which reflects the brain activities, is more directly related to drowsiness. Thus, many Brain-Machine-Interface (BMI) systems have been proposed to detect driver drowsiness. However, detecting driver drowsiness at its early stage poses a major practical hurdle when using existing BMI systems. This study proposes a context-aware BMI system aimed to detect driver drowsiness at its early stage by enriching the EEG data with the intensity of head-movements. The proposed system is carefully designed for low-power consumption with on-chip feature extraction and low energy Bluetooth connection. Also, the proposed system is implemented using JAVA programming language as a mobile application for on-line analysis. In total, 266 datasets obtained from six subjects who participated in a one-hour monotonous driving simulation experiment were used to evaluate this system. According to a video-based reference, the proposed system obtained an overall detection accuracy of 82.71% for classifying alert and slightly drowsy events by using EEG data alone and 96.24% by using the hybrid data of head-movement and EEG. These results indicate that the combination of EEG data and head-movement contextual information constitutes a robust solution for the early detection of driver drowsiness.
引用
收藏
页码:20873 / 20893
页数:21
相关论文
共 50 条
  • [11] Driver Drowsiness Detection Using the In-Ear EEG
    Hwang, Taeho
    Kim, Miyoung
    Hong, Seunghyeok
    Park, Kwang Suk
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 4646 - 4649
  • [12] A Simple Framework for Context-Aware Driver Performance
    Ali, Hashim
    Muhammad, Abubakr
    Khan, Muhammad Mudassir
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [13] CAHOOT: a Context-Aware veHicular intrusiOn detectiOn sysTem
    Micale, Davide
    Costantino, Gianpiero
    Matteucci, Ilaria
    Fenzl, Florian
    Rieke, Roland
    Patane, Giuseppe
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 1211 - 1218
  • [14] Context-Aware Saliency Detection
    Goferman, Stas
    Zelnik-Manor, Lihi
    Tal, Ayellet
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 2376 - 2383
  • [15] Context-Aware Drone Detection
    Oligeri, Gabriele
    Sciancalepore, Savio
    CPSS'22: PROCEEDINGS OF THE 8TH ACM CYBER-PHYSICAL SYSTEM SECURITY WORKSHOP, 2022, : 63 - 71
  • [16] Context-Aware Saliency Detection
    Goferman, Stas
    Zelnik-Manor, Lihi
    Tal, Ayellet
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (10) : 1915 - 1926
  • [17] Context-Aware Drift Detection
    Cobb, Oliver
    Van Looveren, Arnaud
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [18] Context-aware Cardiac Monitoring for Early Detection of Heart Diseases
    Forkan, Abdur
    Khalil, Ibrahim
    Tari, Zahir
    2013 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2013, 40 : 277 - 280
  • [19] A Mobile Driver Safety System: Analysis of Single-Channel EEG on Drowsiness Detection
    Lim, Chee-Keong Alfred
    Chia, Wai Chong
    Chin, Siew Wen
    2014 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND TECHNOLOGY (ICCST), 2014,
  • [20] Driver Drowsiness Detection Using EEG Power Spectrum Analysis
    Awais, Muhammad
    Badruddin, Nasreen
    Drieberg, Micheal
    2014 IEEE REGION 10 SYMPOSIUM, 2014, : 244 - 247