Resolution Invariant Neural Classifiers for Dermoscopy Images of Melanoma

被引:0
|
作者
Surowka, Grzegorz [1 ]
Ogorzalek, Maciej [1 ]
机构
[1] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, PL-30151 Krakow, Poland
关键词
Melanoma; CAD; Wavelets; ANN; PIGMENTED SKIN-LESIONS; NETWORK; CLASSIFICATION; DIAGNOSIS; PATIENT;
D O I
10.1007/978-3-319-59063-9_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article contributes to the Computer Aided Diagnosis (CAD) of melanoma pigmented skin cancer. We test back-propagated Artificial Neural Network (ANN) classifiers for discrimination in benign and malignant skin lesions. Features used for the classification are derived from wavelet decomposition coefficients of the dermoscopy image. We show the most efficient ANN setups as a function of the structure of hidden layers and the network learning algorithms. Our network topologies are limited for the sake of restrictions in memory and processing power of smartphones which are more and more popular as hand-held 'mobile' CAD devices for melanoma. We claim resolution invariance of the selected wavelet features.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 50 条
  • [31] Dermoscopy of naevoid melanoma
    Marchiori Bakos, R.
    BRITISH JOURNAL OF DERMATOLOGY, 2015, 172 (04) : 848 - 849
  • [32] Dermoscopy in cutaneous melanoma
    Francisco Gallegos-Hernandez, Jose
    Lilia Ortiz-Maldonado, Alma
    Gabriel Minauro-Munoz, Gerardo
    Arias-Ceballos, Hector
    Hernandez-Sanjuan, Martin
    CIRUGIA Y CIRUJANOS, 2015, 83 (02): : 107 - 111
  • [33] Dermoscopy on subungual melanoma
    Kaminska-Winciorek, Grazyna
    Spiewak, Radoslaw
    POSTEPY HIGIENY I MEDYCYNY DOSWIADCZALNEJ, 2013, 67 : 380 - 387
  • [34] Dermoscopy in melanoma screening
    Schneider, R
    ARCHIVES OF DERMATOLOGY, 2002, 138 (10) : 1378 - 1379
  • [35] Dermoscopy of melanoma in situ
    Papageorgiou, C.
    Lallas, A.
    Apalla, Z.
    Vakirlis, E.
    Variaah, G.
    Sotiriou, E.
    Lazaridou, E.
    Ioannides, D.
    JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2017, 31 : 45 - 45
  • [36] Detection and segmentation of melanoma skin cancer in dermoscopy images using modified Alexnet convolutional neural network-morphological methodology
    Govindaswamy, Bharathi
    Mallappa, Malleswaran
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (25):
  • [37] Improving the Performance of Melanoma Detection in Dermoscopy Images Using Deep CNN Features
    Gajera, Himanshu K.
    Zaveri, Mukesh A.
    Nayak, Deepak Ranjan
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2021), 2021, : 349 - 354
  • [38] A relative color approach to color discrimination for malignant melanoma detection in dermoscopy images
    Stanley, R. Joe
    Stoecker, William V.
    Moss, Randy H.
    SKIN RESEARCH AND TECHNOLOGY, 2007, 13 (01) : 62 - 72
  • [39] Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks
    Yu, Lequan
    Chen, Hao
    Dou, Qi
    Qin, Jing
    Heng, Pheng-Ann
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (04) : 994 - 1004
  • [40] Melanoma Classification on Dermoscopy Skin Images using Bag Tree Ensemble Classifier
    Lynn, Nay Chi
    War, Nu
    2019 INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION TECHNOLOGIES (ICAIT), 2019, : 143 - 148