Resolution Invariant Neural Classifiers for Dermoscopy Images of Melanoma

被引:0
|
作者
Surowka, Grzegorz [1 ]
Ogorzalek, Maciej [1 ]
机构
[1] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, PL-30151 Krakow, Poland
关键词
Melanoma; CAD; Wavelets; ANN; PIGMENTED SKIN-LESIONS; NETWORK; CLASSIFICATION; DIAGNOSIS; PATIENT;
D O I
10.1007/978-3-319-59063-9_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article contributes to the Computer Aided Diagnosis (CAD) of melanoma pigmented skin cancer. We test back-propagated Artificial Neural Network (ANN) classifiers for discrimination in benign and malignant skin lesions. Features used for the classification are derived from wavelet decomposition coefficients of the dermoscopy image. We show the most efficient ANN setups as a function of the structure of hidden layers and the network learning algorithms. Our network topologies are limited for the sake of restrictions in memory and processing power of smartphones which are more and more popular as hand-held 'mobile' CAD devices for melanoma. We claim resolution invariance of the selected wavelet features.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 50 条
  • [21] A Method for Melanoma Skin Cancer Detection Using Dermoscopy Images
    Mane, Soniya
    Shinde, Swati
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [22] Biologically Inspired QuadTree Color Detection in Dermoscopy Images of Melanoma
    Mahmouei, Sahar Sabbaghi
    Aldeen, Mohammad
    Stoecker, William V.
    Garnavi, Rahil
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (02) : 570 - 577
  • [23] Automatic Segmentation of Melanoma in Dermoscopy Images using Fuzzy Numbers
    Diniz, Jessica B.
    Cordeiro, Filipe R.
    2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2017, : 150 - 155
  • [24] Comparison of Algorithms for Automatic Border Detection of Melanoma in Dermoscopy Images
    Raghavan, Sowmya Srinivasa
    Kaur, Ravneet
    LeAnder, Robert
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXIX, 2016, 9971
  • [25] Dermoscopy of melanoma
    Zivkovic, D. Tiodorovic
    Jovanovic, D.
    Lazarevic, V.
    Jankovic, A.
    Tiodorovic, J.
    ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA, 2006, 15 (04): : 187 - 190
  • [26] WN-based approach to melanoma diagnosis from dermoscopy images
    Sadri, Amir Reza
    Azarianpour, Sepideh
    Zekri, Maryam
    Emre Celebi, Mehmet
    Sadri, Saeid
    IET IMAGE PROCESSING, 2017, 11 (07) : 475 - 482
  • [27] Melanoma Recognition in Dermoscopy Images via Aggregated Deep Convolutional Features
    Yu, Zhen
    Jiang, Xudong
    Zhou, Feng
    Qin, Jing
    Ni, Dong
    Chen, Siping
    Lei, Baiying
    Wang, Tianfu
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (04) : 1006 - 1016
  • [28] Fuzzy logic color detection: Blue areas in melanoma dermoscopy images
    Lingala, Mounika
    Stanley, R. Joe
    Rader, Ryan K.
    Hagerty, Jason
    Rabinovitz, Harold S.
    Oliviero, Margaret
    Choudhry, Iqra
    Stoecker, William V.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2014, 38 (05) : 403 - 410
  • [29] Acral melanoma detection using a convolutional neural network for dermoscopy images (vol 13, e0193321, 2018)
    Yu, Chanki
    Yang, Sejung
    Kim, Wonoh
    Jung, Jinwoong
    Chung, Kee-Yang
    Lee, Sang Wook
    Oh, Byungho
    PLOS ONE, 2018, 13 (04):
  • [30] SEGMENTATION OF DERMOSCOPY IMAGES BASED ON FULLY CONVOLUTIONAL NEURAL NETWORK
    Deng, Zilin
    Fan, Haidi
    Xie, Fengying
    Cui, Yong
    Liu, Jie
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1732 - 1736