Resolution Invariant Neural Classifiers for Dermoscopy Images of Melanoma

被引:0
|
作者
Surowka, Grzegorz [1 ]
Ogorzalek, Maciej [1 ]
机构
[1] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, PL-30151 Krakow, Poland
关键词
Melanoma; CAD; Wavelets; ANN; PIGMENTED SKIN-LESIONS; NETWORK; CLASSIFICATION; DIAGNOSIS; PATIENT;
D O I
10.1007/978-3-319-59063-9_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article contributes to the Computer Aided Diagnosis (CAD) of melanoma pigmented skin cancer. We test back-propagated Artificial Neural Network (ANN) classifiers for discrimination in benign and malignant skin lesions. Features used for the classification are derived from wavelet decomposition coefficients of the dermoscopy image. We show the most efficient ANN setups as a function of the structure of hidden layers and the network learning algorithms. Our network topologies are limited for the sake of restrictions in memory and processing power of smartphones which are more and more popular as hand-held 'mobile' CAD devices for melanoma. We claim resolution invariance of the selected wavelet features.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 50 条
  • [1] Detection of Melanoma with Multiple Machine Learning Classifiers in Dermoscopy Images
    Yildiz, Ugur Emre
    Kilic, Volkan
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 145 - 148
  • [2] Resolution invariant wavelet features of melanoma studied by SVM classifiers
    Surowka, Grzegorz
    Ogorzalek, Maciej
    PLOS ONE, 2019, 14 (02):
  • [3] Convolutional neural networks for the detection of malignant melanoma in dermoscopy images
    Kwiatkowska, Dominika
    Kluska, Piotr
    Reich, Adam
    POSTEPY DERMATOLOGII I ALERGOLOGII, 2021, 38 (03): : 412 - 420
  • [4] Ensembles of Deep Convolutional Neural Networks for Detecting Melanoma in Dermoscopy Images
    Tziomaka, Melina
    Maglogiannis, Ilias
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2021), 2021, 12876 : 523 - 535
  • [5] Melanoma Diagnosis from Dermoscopy Images Using Artificial Neural Network
    Majumder, Sharmin
    Ullah, Muhammad Ahsan
    Dhar, Jitu Prakash
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL ENGINEERING (ICAEE), 2019, : 855 - 859
  • [6] Melanoma Classification on Dermoscopy Images Using a Neural Network Ensemble Model
    Xie, Fengying
    Fan, Haidi
    Li, Yang
    Jiang, Zhiguo
    Meng, Rusong
    Bovik, Alan
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (03) : 849 - 858
  • [7] Deep Convolutional Neural Network for Melanoma Detection using Dermoscopy Images
    Kaur, R.
    GholamHosseini, H.
    Sinha, R.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1524 - 1527
  • [8] Acral melanoma detection using a convolutional neural network for dermoscopy images
    Yu, Chanki
    Yang, Sejung
    Kim, Wonoh
    Jung, Jinwoong
    Chung, Kee-Yang
    Lee, Sang Wook
    Oh, Byungho
    PLOS ONE, 2018, 13 (03):
  • [9] Melanoma Classification in Dermoscopy Images via Ensemble Learning on Deep Neural Network
    Song, Jie
    Li, Jiawei
    Ma, Shiqiang
    Tang, Jijun
    Guo, Fei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 751 - 756
  • [10] Melanoma Classification from Dermoscopy Images Using Ensemble of Convolutional Neural Networks
    Raza, Rehan
    Zulfiqar, Fatima
    Tariq, Shehroz
    Anwar, Gull Bano
    Sargano, Allah Bux
    Habib, Zulfiqar
    MATHEMATICS, 2022, 10 (01)