New algorithm for computing the Hermite interpolation polynomial

被引:4
|
作者
Messaoudi, A. [1 ]
Sadaka, R. [1 ]
Sadok, H. [2 ]
机构
[1] Mohammed V Univ Rabat, Ecole Normale Super, Ave Mohammed Belhassan El Ouazzani,BP 5118, Rabat, Morocco
[2] Univ Littoral Cote dOpale, LMPA, Batiment H Poincarre,50 Rue F Buisson, F-62280 Calais, France
关键词
Polynomial interpolation; Hermite interpolation polynomials; Schur complement; Matrix Sylvester identity; Recursive polynomial interpolation algorithm; Matrix recursive interpolation algorithm; RECURSIVE INTERPOLATION; LINEAR-EQUATIONS; SOLVING SYSTEMS; PROJECTION; FORMALISM;
D O I
10.1007/s11075-017-0353-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let x (0), x (1),ai , x (n) , be a set of n + 1 distinct real numbers (i.e., x (i) not equal x (j) , for i not equal j) and y (i, k) , for i = 0,1,ai , n, and k = 0 ,1 ,ai , n (i) , with n (i) ae 1, be given of real numbers, we know that there exists a unique polynomial p (N - 1)(x) of degree N - 1 where , such that , for i = 0,1,ai , n and k = 0,1,ai , n (i) . P (N-1)(x) is the Hermite interpolation polynomial for the set {(x (i) , y (i, k) ), i = 0,1,ai , n, k = 0,1,ai , n (i) }. The polynomial p (N-1)(x) can be computed by using the Lagrange polynomials. This paper presents a new method for computing Hermite interpolation polynomials, for a particular case n (i) = 1. We will reformulate the Hermite interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Matrix Recursive Polynomial Interpolation Algorithm (MRPIA). Some properties of this algorithm will be studied and some examples will also be given.
引用
收藏
页码:1069 / 1092
页数:24
相关论文
共 50 条
  • [1] New algorithm for computing the Hermite interpolation polynomial
    A. Messaoudi
    R. Sadaka
    H. Sadok
    Numerical Algorithms, 2018, 77 : 1069 - 1092
  • [2] RMVPIA: a new algorithm for computing the Lagrange multivariate polynomial interpolation
    Errachid, M.
    Essanhaji, A.
    Messaoudi, A.
    NUMERICAL ALGORITHMS, 2020, 84 (04) : 1507 - 1534
  • [3] RMVPIA: a new algorithm for computing the Lagrange multivariate polynomial interpolation
    M. Errachid
    A. Essanhaji
    A. Messaoudi
    Numerical Algorithms, 2020, 84 : 1507 - 1534
  • [4] On the Hermite interpolation polynomial
    Pop, Ovidiu T.
    Barbosu, Dan
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (01): : 104 - 109
  • [5] ON THE HERMITE INTERPOLATION POLYNOMIAL
    VALIAHO, H
    JOURNAL OF APPROXIMATION THEORY, 1984, 40 (04) : 391 - 392
  • [6] Matrix recursive polynomial interpolation algorithm: An algorithm for computing the interpolation polynomials
    Messaoudi, A.
    Sadaka, R.
    Sadok, H.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 373
  • [7] Sparse Polynomial Hermite Interpolation
    Kaltofen, Erich L.
    PROCEEDINGS OF THE 2022 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2022, 2022, : 469 - 478
  • [8] A NEW PARALLEL POLYNOMIAL DIVISION BY A SEPARABLE POLYNOMIAL VIA HERMITE INTERPOLATION WITH APPLICATIONS
    Kechriniotis, Aristides I.
    Delibasis, Konstantinos K.
    Tsonos, Christos
    Petropoulos, Nicholas
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 770 - 781
  • [9] Interpolation algorithm for computing Drazin inverse of polynomial matrices
    Petkovic, Marko D.
    Stanimirovic, Predrag S.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) : 526 - 539
  • [10] A new non‐polynomial univariate interpolation formula of Hermite type
    Ghislain Franssens
    Advances in Computational Mathematics, 1999, 10 : 367 - 388