A new non‐polynomial univariate interpolation formula of Hermite type

被引:0
|
作者
Ghislain Franssens
机构
[1] BIRA – Belgian Institute for Space Aeronomy,
来源
关键词
univariate Hermite interpolation; Multipoint Taylor series; 65D05; 65D15; 41A30; 41A58; 26E05;
D O I
暂无
中图分类号
学科分类号
摘要
A new C∞ interpolant is presented for the univariate Hermite interpolation problem. It differs from the classical solution in that the interpolant is of non‐polynomial nature. Its basis functions are a set of simple, compact support, transcendental functions. The interpolant can be regarded as a truncated Multipoint Taylor series. It has essential singularities at the sample points, but is well behaved over the real axis and satisfies the given functional data. The interpolant converges to the underlying real‐analytic function when (i) the number of derivatives at each point tends to infinity and the number of sample points remains finite, and when (ii) the spacing between sample points tends to zero and the number of specified derivatives at each sample point remains finite.
引用
收藏
页码:367 / 388
页数:21
相关论文
共 50 条
  • [1] A new non-polynomial univariate interpolation formula of Hermite type
    Franssens, G
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 10 (3-4) : 367 - 388
  • [2] THE HERMITE FORMULA FOR THE TRIGONOMETRIC INTERPOLATION POLYNOMIAL
    ICHIM, I
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1983, 28 (08): : 741 - 749
  • [3] New Closed Formula for the Univariate Hermite Interpolating Polynomial of Total Degree and its Application in Medical Image Slice Interpolation
    Delibasis, Konstantinos K.
    Kechriniotis, Aristides I.
    Assimakis, Nicholas D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (12) : 6294 - 6304
  • [4] New closed formula for the univariate hermite interpolating polynomial of total degree and its application in medical image slice interpolation
    Delibasis, Konstantinos K.
    Kechriniotis, Aristides I.
    Assimakis, Nicholas D.
    IEEE Transactions on Computers, 2011, 60 (12) : 6294 - 6304
  • [5] New algorithm for computing the Hermite interpolation polynomial
    A. Messaoudi
    R. Sadaka
    H. Sadok
    Numerical Algorithms, 2018, 77 : 1069 - 1092
  • [6] New algorithm for computing the Hermite interpolation polynomial
    Messaoudi, A.
    Sadaka, R.
    Sadok, H.
    NUMERICAL ALGORITHMS, 2018, 77 (04) : 1069 - 1092
  • [7] On the Hermite interpolation polynomial
    Pop, Ovidiu T.
    Barbosu, Dan
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (01): : 104 - 109
  • [8] ON THE HERMITE INTERPOLATION POLYNOMIAL
    VALIAHO, H
    JOURNAL OF APPROXIMATION THEORY, 1984, 40 (04) : 391 - 392
  • [9] Sparse Polynomial Hermite Interpolation
    Kaltofen, Erich L.
    PROCEEDINGS OF THE 2022 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2022, 2022, : 469 - 478
  • [10] A NEW PARALLEL POLYNOMIAL DIVISION BY A SEPARABLE POLYNOMIAL VIA HERMITE INTERPOLATION WITH APPLICATIONS
    Kechriniotis, Aristides I.
    Delibasis, Konstantinos K.
    Tsonos, Christos
    Petropoulos, Nicholas
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 770 - 781