New algorithm for computing the Hermite interpolation polynomial

被引:4
|
作者
Messaoudi, A. [1 ]
Sadaka, R. [1 ]
Sadok, H. [2 ]
机构
[1] Mohammed V Univ Rabat, Ecole Normale Super, Ave Mohammed Belhassan El Ouazzani,BP 5118, Rabat, Morocco
[2] Univ Littoral Cote dOpale, LMPA, Batiment H Poincarre,50 Rue F Buisson, F-62280 Calais, France
关键词
Polynomial interpolation; Hermite interpolation polynomials; Schur complement; Matrix Sylvester identity; Recursive polynomial interpolation algorithm; Matrix recursive interpolation algorithm; RECURSIVE INTERPOLATION; LINEAR-EQUATIONS; SOLVING SYSTEMS; PROJECTION; FORMALISM;
D O I
10.1007/s11075-017-0353-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let x (0), x (1),ai , x (n) , be a set of n + 1 distinct real numbers (i.e., x (i) not equal x (j) , for i not equal j) and y (i, k) , for i = 0,1,ai , n, and k = 0 ,1 ,ai , n (i) , with n (i) ae 1, be given of real numbers, we know that there exists a unique polynomial p (N - 1)(x) of degree N - 1 where , such that , for i = 0,1,ai , n and k = 0,1,ai , n (i) . P (N-1)(x) is the Hermite interpolation polynomial for the set {(x (i) , y (i, k) ), i = 0,1,ai , n, k = 0,1,ai , n (i) }. The polynomial p (N-1)(x) can be computed by using the Lagrange polynomials. This paper presents a new method for computing Hermite interpolation polynomials, for a particular case n (i) = 1. We will reformulate the Hermite interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Matrix Recursive Polynomial Interpolation Algorithm (MRPIA). Some properties of this algorithm will be studied and some examples will also be given.
引用
收藏
页码:1069 / 1092
页数:24
相关论文
共 50 条
  • [21] A Fractal Version of a Bivariate Hermite Polynomial Interpolation
    P. Viswanathan
    Mediterranean Journal of Mathematics, 2021, 18
  • [22] A note on the Hermite interpolation polynomial for rational functions
    Ivan, Mircea
    APPLIED NUMERICAL MATHEMATICS, 2007, 57 (02) : 230 - 233
  • [23] Hermite Interpolation Polynomial for Functions of Several Variables
    Kashpur, O. F.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2022, 58 (03) : 399 - 408
  • [24] On the approximation of derivatives of the interpolation Hermite polynomial on a triangle
    A. V. Meleshkina
    Computational Mathematics and Mathematical Physics, 2010, 50 : 201 - 210
  • [25] On the Approximation of Derivatives of the Interpolation Hermite Polynomial on a Triangle
    Meleshkina, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (02) : 201 - 210
  • [26] Computing Hermite Forms of Polynomial Matrices
    Gupta, Somit
    Storjohann, Arne
    ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2011, : 155 - 162
  • [27] GRPIA: a new algorithm for computing interpolation polynomials
    Messaoudi, Abderrahim
    Errachid, Mohammed
    Jbilou, Khalide
    Sadok, Hassane
    NUMERICAL ALGORITHMS, 2019, 80 (01) : 253 - 278
  • [28] A new interpolation algorithm for computing Dixon resultants
    Jinadu, Ayoola
    Monagan, Michael
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2022, 56 (02): : 88 - 91
  • [29] GRPIA: a new algorithm for computing interpolation polynomials
    Abderrahim Messaoudi
    Mohammed Errachid
    Khalide Jbilou
    Hassane Sadok
    Numerical Algorithms, 2019, 80 : 253 - 278
  • [30] Hermite interpolation by piecewise polynomial surfaces with rational offsets
    Jüttler, B
    Sampoli, ML
    COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (04) : 361 - 385