Minimum degree triangulation for rectangular domains

被引:0
|
作者
Liu, PF [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10764, Taiwan
关键词
design of algorithms; mesh generation; rectangle and convex polygons; min-max degree triangulation;
D O I
10.1016/j.ipl.2005.07.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes an optimal triangulation algorithm for rectangles. We derive lower bounds on the maximum degree of triangulation, and show that our triangulation algorithm matches the lower bounds. Several important observations are also made, including a zig-zag condition that can verify whether a triangulation can minimizes the maximum degree to 4 or not. In addition, this paper identifies the necessary and sufficient condition that there exists a maximum degree 4 triangulation for convex polygons, and gives a linear time checking algorithm. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:128 / 135
页数:8
相关论文
共 50 条
  • [31] ON A LINEAR PROGRAM FOR MINIMUM-WEIGHT TRIANGULATION
    Yousefi, Arman
    Young, Neal E.
    SIAM JOURNAL ON COMPUTING, 2014, 43 (01) : 25 - 51
  • [32] Delaunay triangulation of arbitrarily shaped planar domains
    Sapidis, Nickolas
    Perucchio, Renato
    Computer Aided Geometric Design, 1991, 8 (06) : 421 - 437
  • [33] IMPROVED HEURISTICS FOR THE MINIMUM WEIGHT TRIANGULATION PROBLEM
    徐寅峰
    周电
    Acta Mathematicae Applicatae Sinica(English Series), 1995, (04) : 359 - 368
  • [34] Minimum Degree Orderings
    Hiroshi Nagamochi
    Algorithmica, 2010, 56 : 17 - 34
  • [35] Minimum Degree Orderings
    Nagamochi, Hiroshi
    ALGORITHMICA, 2010, 56 (01) : 17 - 34
  • [36] Minimum degree orderings
    Nagamochi, Hiroshi
    ALGORITHMS AND COMPUTATION, 2007, 4835 : 17 - 28
  • [37] MINIMUM PHYSICS DEGREE
    MAZUR, P
    PHYSICS TODAY, 1982, 35 (11) : 104 - 105
  • [38] Minimum Width Rectangular Annulus
    Mukherjee, Joydeep
    Mahapatra, Priya Ranjan Sinha
    Karmakar, Arindam
    Das, Sandip
    FRONTIERS IN ALGORITHMICS AND ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, (FAW-AAIM 2011), 2011, 6681 : 364 - 374
  • [39] Superscaling of percolation on rectangular domains
    Watanabe, H
    Yukawa, S
    Ito, N
    Hu, CK
    PHYSICAL REVIEW LETTERS, 2004, 93 (19) : 190601 - 1
  • [40] Computing a Minimum Weight Triangulation of a Sparse Point Set*
    Cao An Wang
    Yin-Feng Xu
    Journal of Global Optimization, 1999, 15 : 73 - 83