Minimum degree triangulation for rectangular domains

被引:0
|
作者
Liu, PF [1 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10764, Taiwan
关键词
design of algorithms; mesh generation; rectangle and convex polygons; min-max degree triangulation;
D O I
10.1016/j.ipl.2005.07.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes an optimal triangulation algorithm for rectangles. We derive lower bounds on the maximum degree of triangulation, and show that our triangulation algorithm matches the lower bounds. Several important observations are also made, including a zig-zag condition that can verify whether a triangulation can minimizes the maximum degree to 4 or not. In addition, this paper identifies the necessary and sufficient condition that there exists a maximum degree 4 triangulation for convex polygons, and gives a linear time checking algorithm. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:128 / 135
页数:8
相关论文
共 50 条
  • [21] DEGREE DISTANCE AND MINIMUM DEGREE
    Mukwembi, S.
    Munyira, S.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 87 (02) : 255 - 271
  • [22] A parallel approximation algorithm for minimum weight triangulation
    Gudmundsson, J
    Levcopoulos, C
    FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, 1998, 1530 : 233 - 244
  • [23] Approximated algorithms for the minimum dilation triangulation problem
    Maria Gisela Dorzán
    Mario Guillermo Leguizamón
    Efrén Mezura-Montes
    Gregorio Hernández-Peñalver
    Journal of Heuristics, 2014, 20 : 189 - 209
  • [24] Approximated algorithms for the minimum dilation triangulation problem
    Gisela Dorzan, Maria
    Guillermo Leguizamon, Mario
    Mezura-Montes, Efren
    Hernandez-Penalver, Gregorio
    JOURNAL OF HEURISTICS, 2014, 20 (02) : 189 - 209
  • [25] Approximation of minimum triangulation for polyhedron with bounded degrees
    Chin, FYL
    Fung, SPY
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2001, 2223 : 172 - 184
  • [26] New results for the minimum weight triangulation problem
    Heath, L.S.
    Pemmaraju, S.V.
    Algorithmica (New York), 1994, 12 (06): : 533 - 552
  • [27] An exact algorithm for the minimum dilation triangulation problem
    Sattar Sattari
    Mohammad Izadi
    Journal of Global Optimization, 2017, 69 : 343 - 367
  • [28] An exact algorithm for the minimum dilation triangulation problem
    Sattari, Sattar
    Izadi, Mohammad
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 69 (02) : 343 - 367
  • [29] Minimum weight triangulation by cutting out triangles
    Grantson, M
    Borgelt, C
    Levcopoulos, C
    ALGORITHMS AND COMPUTATION, 2005, 3827 : 984 - 994
  • [30] NEW RESULTS FOR THE MINIMUM WEIGHT TRIANGULATION PROBLEM
    HEATH, LS
    PEMMARAJU, SV
    ALGORITHMICA, 1994, 12 (06) : 533 - 552