Estimating the causal effect of measured endogenous variables: A tutorial on experimentally randomized instrumental variables

被引:77
|
作者
Sajons, Gwendolin B. [1 ,2 ]
机构
[1] Univ Basel, Dept Business & Econ, Peter Merian Weg 6, CH-4002 Basel, Switzerland
[2] ESCP Business Sch, Heubnerweg 8-10, D-14059 Berlin, Germany
来源
LEADERSHIP QUARTERLY | 2020年 / 31卷 / 05期
关键词
Experiments; Instrumental variable estimation; Causality; Omitted variables; Endogeneity; MENDELIAN RANDOMIZATION; ORGANIZATIONAL JUSTICE; GENERALIZED-METHOD; WEAK INSTRUMENTS; JOB-SATISFACTION; HAUSMAN TEST; IDENTIFICATION; LEADERSHIP; TESTS; CONSEQUENCES;
D O I
10.1016/j.leaqua.2019.101348
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Omitted variables create endogeneity and thus bias the estimation of the causal effect of measured variables on outcomes. Such measured variables are ubiquitous and include perceptions, attitudes, emotions, behaviors, and choices. Even experimental studies are not immune to the endogeneity problem. I propose a solution to this challenge: Experimentally randomized instrumental variables (ERIVs), which can correct for endogeneity bias via instrumental variable estimation. Such ERIVs can be generated in laboratory or field settings. Using perceptions as an example of a measured variable, I examine 74 recent articles from two top-tier management journals. The estimation methods commonly used exposed estimates to potential endogeneity bias; yet, authors incorrectly interpreted the estimated coefficients as causal in all cases. Then I demonstrate the mechanics of the ERIV procedure using simulated data and show how researchers can apply this methodology in a real experimental context.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Identification of causal effects in linear models: beyond instrumental variables
    Elena Stanghellini
    Eduwin Pakpahan
    [J]. TEST, 2015, 24 : 489 - 509
  • [42] Regression and weighting methods for causal inference using instrumental variables
    Tan, Zhiqiang
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) : 1607 - 1618
  • [43] Identification of causal effects in linear models: beyond instrumental variables
    Stanghellini, Elena
    Pakpahan, Eduwin
    [J]. TEST, 2015, 24 (03) : 489 - 509
  • [44] The individualistic fallacy, ecological studies and instrumental variables: A causal interpretation
    Loney T.
    Nagelkerke N.J.
    [J]. Emerging Themes in Epidemiology, 11 (1):
  • [45] Dummy endogenous treatment effect estimation using high-dimensional instrumental variables
    Zhong, Wei
    Zhou, Wei
    Fan, Qingliang
    Gao, Yang
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (03): : 795 - 819
  • [46] Instrumental variables estimators of nonparametric models with discrete endogenous regressors
    Das, M
    [J]. JOURNAL OF ECONOMETRICS, 2005, 124 (02) : 335 - 361
  • [47] Selection and integration of generalized instrumental variables for estimating total effects
    Ryusei Shingaki
    Hiroshi Kanda
    Manabu Kuroki
    [J]. Statistical Papers, 2021, 62 : 2355 - 2381
  • [48] Estimating the marginal willingness to pay function without instrumental variables
    Bishop, Kelly C.
    Timmins, Christopher
    [J]. JOURNAL OF URBAN ECONOMICS, 2019, 109 : 66 - 83
  • [49] Selection and integration of generalized instrumental variables for estimating total effects
    Shingaki, Ryusei
    Kanda, Hiroshi
    Kuroki, Manabu
    [J]. STATISTICAL PAPERS, 2021, 62 (05) : 2355 - 2381
  • [50] Discovering Ancestral Instrumental Variables for Causal Inference From Observational Data
    Cheng, Debo
    Li, Jiuyong
    Liu, Lin
    Yu, Kui
    Le, Thuc Duy
    Liu, Jixue
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11542 - 11552