Discovering Ancestral Instrumental Variables for Causal Inference From Observational Data
被引:3
|
作者:
Cheng, Debo
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Univ Finance & Econ, Guangxi Key Lab Big Data Finance & Econ, Nanning 530000, Peoples R China
Univ South Australia, STEM, Mawson Lakes, SA 5095, AustraliaGuangxi Univ Finance & Econ, Guangxi Key Lab Big Data Finance & Econ, Nanning 530000, Peoples R China
Cheng, Debo
[1
,2
]
Li, Jiuyong
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Australia, STEM, Mawson Lakes, SA 5095, AustraliaGuangxi Univ Finance & Econ, Guangxi Key Lab Big Data Finance & Econ, Nanning 530000, Peoples R China
Li, Jiuyong
[2
]
Liu, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Australia, STEM, Mawson Lakes, SA 5095, AustraliaGuangxi Univ Finance & Econ, Guangxi Key Lab Big Data Finance & Econ, Nanning 530000, Peoples R China
Liu, Lin
[2
]
Yu, Kui
论文数: 0引用数: 0
h-index: 0
机构:
Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Peoples R ChinaGuangxi Univ Finance & Econ, Guangxi Key Lab Big Data Finance & Econ, Nanning 530000, Peoples R China
Yu, Kui
[3
]
Le, Thuc Duy
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Australia, STEM, Mawson Lakes, SA 5095, AustraliaGuangxi Univ Finance & Econ, Guangxi Key Lab Big Data Finance & Econ, Nanning 530000, Peoples R China
Le, Thuc Duy
[2
]
Liu, Jixue
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Australia, STEM, Mawson Lakes, SA 5095, AustraliaGuangxi Univ Finance & Econ, Guangxi Key Lab Big Data Finance & Econ, Nanning 530000, Peoples R China
Liu, Jixue
[2
]
机构:
[1] Guangxi Univ Finance & Econ, Guangxi Key Lab Big Data Finance & Econ, Nanning 530000, Peoples R China
[2] Univ South Australia, STEM, Mawson Lakes, SA 5095, Australia
[3] Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230601, Peoples R China
Instrumental variable (IV) is a powerful approach to inferring the causal effect of a treatment on an outcome of interest from observational data even when there exist latent confounders between the treatment and the outcome. However, existing IV methods require that an IV is selected and justified with domain knowledge. An invalid IV may lead to biased estimates. Hence, discovering a valid IV is critical to the applications of IV methods. In this article, we study and design a data-driven algorithm to discover valid IVs from data under mild assumptions. We develop the theory based on partial ancestral graphs (PAGs) to support the search for a set of candidate ancestral IVs (AIVs), and for each possible AIV, the identification of its conditioning set. Based on the theory, we propose a data-driven algorithm to discover a pair of IVs from data. The experiments on synthetic and real-world datasets show that the developed IV discovery algorithm estimates accurate estimates of causal effects in comparison with the state-of-the-art IV-based causal effect estimators.
机构:
Univ Fed Rio Grande do Norte, Int Inst Phys, POB 1613, BR-59078970 Natal, RN, Brazil
Univ Fed Rural Pernambuco, Dept Comp, BR-52171900 Recife, PE, BrazilUniv Gdansk, Int Ctr Theory Quantum Technol ICTQT, PL-80308 Gdansk, Poland
Moreno, George
Chaves, Rafael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Norte, Int Inst Phys, POB 1613, BR-59078970 Natal, RN, Brazil
Univ Fed Rio Grande do Norte, Sch Sci & Technol, BR-59078970 Natal, RN, BrazilUniv Gdansk, Int Ctr Theory Quantum Technol ICTQT, PL-80308 Gdansk, Poland
机构:
Karolinska Inst, Inst Environm Med, Stockholm, SwedenLiverpool John Moores Univ, Data Sci Res Ctr, Liverpool, England
Zhan, Yiqiang
Liang, Xiaoyu
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Coll Human Med, Dept Epidemiol & Biostat, E Lansing, MI 48824 USALiverpool John Moores Univ, Data Sci Res Ctr, Liverpool, England
Liang, Xiaoyu
Volovici, Victor
论文数: 0引用数: 0
h-index: 0
机构:
Erasmus MC, Ctr Med Decis Making, Dept Neurosurg, Rotterdam, NetherlandsLiverpool John Moores Univ, Data Sci Res Ctr, Liverpool, England