Mathematical Modelling for Patient Selection in Proton Therapy

被引:13
|
作者
Mee, T. [1 ,2 ,3 ]
Kirkby, N. F. [1 ,2 ,3 ]
Kirkby, K. J. [1 ,2 ,3 ]
机构
[1] Univ Manchester, Fac Biol Med & Hlth, Sch Med Sci, Div Canc Sci, Manchester, Lancs, England
[2] Christie NHS Fdn Trust, Manchester, Lancs, England
[3] Univ Manchester, Manchester Acad Hlth Sci Ctr, NIHR Manchester Biomed Res Ctr, Manchester, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Discrete event simulation; mathematical modelling; NTCP; patient selection; proton therapy; DISCRETE-EVENT SIMULATION; TUBE-FEEDING DEPENDENCE; COST-EFFECTIVENESS; NORMAL TISSUE; RADIOTHERAPY UTILIZATION; PARTICLE RADIOTHERAPY; CLINICAL-OUTCOMES; RADIATION-THERAPY; MODALITY THERAPY; MALTHUS PROGRAM;
D O I
10.1016/j.clon.2018.01.007
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Proton beam therapy (PBT) is still relatively new in cancer treatment and the clinical evidence base is relatively sparse. Mathematical modelling offers assistance when selecting patients for PBT and predicting the demand for service. Discrete event simulation, normal tissue complication probability, quality- adjusted life-years and Markov Chain models are all mathematical and statistical modelling techniques currently used but none is dominant. As new evidence and outcome data become available from PBT, comprehensive models will emerge that are less dependent on the specific technologies of radiotherapy planning and delivery. (C) 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:299 / 306
页数:8
相关论文
共 50 条
  • [1] Mathematical Modelling of radiation response in Proton Therapy
    Kirkby, K.
    Mackay, R. I.
    Kirkby, N. F.
    Warmenhoven, J.
    Henthorn, N.
    Chadwick, A.
    Ingram, S.
    Rothwell, W.
    Smith, E.
    Burnet, N. G.
    Aitkenhead, A.
    Merchant, M. J.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S10 - S10
  • [2] Patient selection for proton therapy: a clinicians view
    Mahajan, A.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S4 - S4
  • [3] A scoping review of patient selection methods for proton therapy
    Zientara, Nicole
    Giles, Eileen
    Le, Hien
    Short, Michala
    JOURNAL OF MEDICAL RADIATION SCIENCES, 2022, 69 (01) : 108 - 121
  • [4] Mathematical modelling the interaction of laser pulse with substance for the tasks of proton therapy
    Echkina, Eu
    Guzminova, N.
    8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391
  • [5] Proton Therapy in Breast Cancer: A Review of Potential Approaches for Patient Selection
    Wu, Xiao-Yu
    Chen, Mei
    Cao, Lu
    Li, Min
    Chen, Jia-Yi
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2024, 23
  • [6] Mathematical modelling of proton migration in Earth mantle
    Bobrovskiy, Vadim
    Galvis, Juan
    Kaplin, Alexey
    Sinitsyn, Alexander
    Tognoli, Marco
    Trucco, Paolo
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2022, 17
  • [7] A systematic, large-scale planning comparison for patient selection in proton therapy
    Habraken, S.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S416 - S417
  • [8] Model based proton therapy patient selection in the context of limited slot availability
    Unkelbach, J.
    Papp, D.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1564 - S1565
  • [9] Cardiotoxicity model-based patient selection for Hodgkin lymphoma proton therapy
    Loap, Pierre
    Orlandi, Ester
    De Marzi, Ludovic
    Vitolo, Viviana
    Barcellini, Amelia
    Iannalfi, Alberto
    Dendale, Remi
    Kirova, Youlia
    Mirandola, Alfredo
    ACTA ONCOLOGICA, 2022, 61 (08) : 979 - 986
  • [10] The impact of treatment accuracy on proton therapy patient selection for oropharyngeal cancer patients
    Arts, Tine
    Breedveld, Sebastiaan
    de Jong, Martin A.
    Astreinidou, Eleftheria
    Tans, Lisa
    Keskin-Cambay, Fatma
    Krol, Augustinus D. G.
    van de Water, Steven
    Bijman, Rik G.
    Hoogeman, Mischa S.
    RADIOTHERAPY AND ONCOLOGY, 2017, 125 (03) : 520 - 525