Mathematical Modelling for Patient Selection in Proton Therapy

被引:13
|
作者
Mee, T. [1 ,2 ,3 ]
Kirkby, N. F. [1 ,2 ,3 ]
Kirkby, K. J. [1 ,2 ,3 ]
机构
[1] Univ Manchester, Fac Biol Med & Hlth, Sch Med Sci, Div Canc Sci, Manchester, Lancs, England
[2] Christie NHS Fdn Trust, Manchester, Lancs, England
[3] Univ Manchester, Manchester Acad Hlth Sci Ctr, NIHR Manchester Biomed Res Ctr, Manchester, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Discrete event simulation; mathematical modelling; NTCP; patient selection; proton therapy; DISCRETE-EVENT SIMULATION; TUBE-FEEDING DEPENDENCE; COST-EFFECTIVENESS; NORMAL TISSUE; RADIOTHERAPY UTILIZATION; PARTICLE RADIOTHERAPY; CLINICAL-OUTCOMES; RADIATION-THERAPY; MODALITY THERAPY; MALTHUS PROGRAM;
D O I
10.1016/j.clon.2018.01.007
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Proton beam therapy (PBT) is still relatively new in cancer treatment and the clinical evidence base is relatively sparse. Mathematical modelling offers assistance when selecting patients for PBT and predicting the demand for service. Discrete event simulation, normal tissue complication probability, quality- adjusted life-years and Markov Chain models are all mathematical and statistical modelling techniques currently used but none is dominant. As new evidence and outcome data become available from PBT, comprehensive models will emerge that are less dependent on the specific technologies of radiotherapy planning and delivery. (C) 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:299 / 306
页数:8
相关论文
共 50 条
  • [31] Efficient proton transport modelling for proton beam therapy and biological quantification
    Ben S. Ashby
    Veronika Chronholm
    Daniel K. Hajnal
    Alex Lukyanov
    Katherine MacKenzie
    Aaron Pim
    Tristan Pryer
    Journal of Mathematical Biology, 2025, 90 (5)
  • [32] Selection of patients for proton therapy: a physicists view
    Hoogeman, M.
    Arts, T.
    Van de Water, S.
    Van der Voort, S.
    Perko, Z.
    Lathouwers, D.
    Breedveld, S.
    Heijmen, B.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S4 - S4
  • [33] Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse
    Stiehl, Thomas
    Baran, Natalia
    Ho, Anthony D.
    Marciniak-Czochra, Anna
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (94)
  • [34] Patient positioning verification for proton therapy using proton radiography
    Hammi, A.
    Koenig, S.
    Weber, D. C.
    Poppe, B.
    Lomax, A. J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (24):
  • [35] Linear Approach for Mathematical Modelling as a Tool for Efficient Portfolio Selection
    Kryanev, Alexander
    Sliva, Darya
    Sinitsin, Andrey
    DISTRIBUTED COMPUTER AND COMMUNICATION NETWORKS, DCCN 2016, 2016, 678 : 589 - 600
  • [36] Mathematical modelling for spatial optimization of irradiation during proton radiotherapy with nanosensitizers
    Kuznetsov, Maxim
    Kolobov, Andrey
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2023, 38 (05) : 303 - 321
  • [37] Proton Therapy in Supradiaphragmatic Lymphoma: Predicting Treatment-Related Mortality to Help Optimize Patient Selection
    Ntentas, Georgios
    Dedeckova, Katerina
    Andrlik, Michal
    Aznar, Marianne C.
    Shakir, Rebecca
    Ramroth, Johanna
    Begum, Rubina
    Kubes, Jiri
    Darby, Sarah C.
    Mikhaeel, N. George
    Cutter, David J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 112 (04): : 913 - 925
  • [38] Impact of CBCT-based patient positioning uncertainty due to the ROI/DOF selection for proton therapy
    Guo, M.
    Batin, E.
    Bolsi, A.
    Safai, S.
    Weber, D.
    Lomax, A.
    Chen, Z.
    Zhang, Y.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S343 - S345
  • [39] Towards Individualizing Patient Selection in Proton Therapy for Lung Cancer Using the Model-Based Approach
    Teoh, S.
    Fiorini, F.
    George, B.
    Vallis, K.
    Van den Heuvel, F.
    JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (10) : S1027 - S1027
  • [40] Mathematical modelling of vascular tumour growth and implications for therapy
    Panovska, Jasmina
    Byrne, Helen M.
    Maini, Philip K.
    MATHEMATICAL MODELING OF BIOLOGICAL SYSTEMS, VOL I: CELLULAR BIOPHYSICS, REGULATORY NETWORKS, DEVELOPMENT, BIOMEDICINE, AND DATA ANALYSIS, 2007, : 205 - +