BenchENAS: A Benchmarking Platform for Evolutionary Neural Architecture Search

被引:11
|
作者
Xie, Xiangning [1 ]
Liu, Yuqiao [1 ]
Sun, Yanan [1 ]
Yen, Gary G. [2 ]
Xue, Bing [3 ]
Zhang, Mengjie [3 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
[3] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6140, New Zealand
关键词
Benchmarking platform; evolutionary computation (EC); neural architecture search (NAS); GENETIC ALGORITHM;
D O I
10.1109/TEVC.2022.3147526
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural architecture search (NAS), which automatically designs the architectures of deep neural networks, has achieved breakthrough success over many applications in the past few years. Among different classes of NAS methods, evolutionary computation-based NAS (ENAS) methods have recently gained much attention. Unfortunately, the development of ENAS is hindered by unfair comparison between different ENAS algorithms due to different training conditions and high computational cost caused by expensive performance evaluation. This article develops a platform named BenchENAS, in short for benchmarking evolutionary NAS, to address these issues. BenchENAS makes it easy to achieve fair comparisons between different algorithms by keeping them under the same settings. To accelerate the performance evaluation in a common lab environment, BenchENAS designs a novel and generic efficient evaluation method for the population characteristics of evolutionary computation. This method has greatly improved the efficiency of the evaluation. Furthermore, BenchENAS is easy to install and highly configurable and modular, which brings benefits in good usability and easy extensibility. This article conducts efficient comparison experiments on eight ENAS algorithms with high GPU utilization on this platform. The experiments validate that the fair comparison issue does exist in the current ENAS algorithms, and BenchENAS can alleviate this issue. A Website has been built to promote BenchENAS at https://benchenas.com, where interested researchers can obtain the source code and document of BenchENAS for free.
引用
收藏
页码:1473 / 1485
页数:13
相关论文
共 50 条
  • [31] EvoAAA: An evolutionary methodology for automated neural autoencoder architecture search
    Charte, Francisco
    Rivera, Antonio J.
    Martinez, Francisco
    del Jesus, Maria J.
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2020, 27 (03) : 211 - 231
  • [32] Knowledge-aware evolutionary graph neural architecture search
    Wang, Chao
    Zhao, Jiaxuan
    Li, Lingling
    Jiao, Licheng
    Liu, Fang
    Liu, Xu
    Yang, Shuyuan
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [33] PRE-NAS: Evolutionary Neural Architecture Search With Predictor
    Peng, Yameng
    Song, Andy
    Ciesielski, Vic
    Fayek, Haytham M. M.
    Chang, Xiaojun
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (01) : 26 - 36
  • [34] Real-Time Federated Evolutionary Neural Architecture Search
    Zhu, Hangyu
    Jin, Yaochu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) : 364 - 378
  • [35] Efficient evolutionary neural architecture search by modular inheritable crossover
    He, Cheng
    Tan, Hao
    Huang, Shihua
    Cheng, Ran
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 64
  • [36] Score Predictor-Assisted Evolutionary Neural Architecture Search
    Jiang, Pengcheng
    Xue, Yu
    Neri, Ferrante
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025,
  • [37] Efficient Self-learning Evolutionary Neural Architecture Search
    Qiu, Zhengzhong
    Bi, Wei
    Xu, Dong
    Guo, Hua
    Ge, Hongwei
    Liang, Yanchun
    Lee, Heow Pueh
    Wu, Chunguo
    APPLIED SOFT COMPUTING, 2023, 146
  • [38] Neural Architecture Search Based on Evolutionary Algorithms with Fitness Approximation
    Pan, Chao
    Yao, Xin
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [39] Evolutionary Neural Architecture Search for Multivariate Time Series Forecasting
    Liang, Zixuan
    Sun, Yanan
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [40] Evolutionary neural architecture search for remaining useful life prediction
    Mo, Hyunho
    Custode, Leonardo Lucio
    Iacca, Giovanni
    APPLIED SOFT COMPUTING, 2021, 108