BenchENAS: A Benchmarking Platform for Evolutionary Neural Architecture Search

被引:11
|
作者
Xie, Xiangning [1 ]
Liu, Yuqiao [1 ]
Sun, Yanan [1 ]
Yen, Gary G. [2 ]
Xue, Bing [3 ]
Zhang, Mengjie [3 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
[3] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington 6140, New Zealand
关键词
Benchmarking platform; evolutionary computation (EC); neural architecture search (NAS); GENETIC ALGORITHM;
D O I
10.1109/TEVC.2022.3147526
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural architecture search (NAS), which automatically designs the architectures of deep neural networks, has achieved breakthrough success over many applications in the past few years. Among different classes of NAS methods, evolutionary computation-based NAS (ENAS) methods have recently gained much attention. Unfortunately, the development of ENAS is hindered by unfair comparison between different ENAS algorithms due to different training conditions and high computational cost caused by expensive performance evaluation. This article develops a platform named BenchENAS, in short for benchmarking evolutionary NAS, to address these issues. BenchENAS makes it easy to achieve fair comparisons between different algorithms by keeping them under the same settings. To accelerate the performance evaluation in a common lab environment, BenchENAS designs a novel and generic efficient evaluation method for the population characteristics of evolutionary computation. This method has greatly improved the efficiency of the evaluation. Furthermore, BenchENAS is easy to install and highly configurable and modular, which brings benefits in good usability and easy extensibility. This article conducts efficient comparison experiments on eight ENAS algorithms with high GPU utilization on this platform. The experiments validate that the fair comparison issue does exist in the current ENAS algorithms, and BenchENAS can alleviate this issue. A Website has been built to promote BenchENAS at https://benchenas.com, where interested researchers can obtain the source code and document of BenchENAS for free.
引用
收藏
页码:1473 / 1485
页数:13
相关论文
共 50 条
  • [21] Evolutionary Neural Architecture Search and Its Applications in Healthcare
    Liu, Xin
    Li, Jie
    Zhao, Jianwei
    Cao, Bin
    Yan, Rongge
    Lyu, Zhihan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (01): : 143 - 185
  • [22] Evolutionary Neural Architecture Search for Facial Expression Recognition
    Deng, Shuchao
    Lv, Zeqiong
    Galvan, Edgar
    Sun, Yanan
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (05): : 1405 - 1419
  • [23] Evolutionary Neural Architecture Search for Transformer in Knowledge Tracing
    Yang, Shangshang
    Yu, Xiaoshan
    Tian, Ye
    Yan, Xueming
    Ma, Haiping
    Zhang, Xingyi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [24] Efficient evolutionary neural architecture search based on hybrid search space
    Gong, Tao
    Ma, Yongjie
    Xu, Yang
    Song, Changwei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3313 - 3326
  • [25] Hybrid Architecture-Based Evolutionary Robust Neural Architecture Search
    Yang, Shangshang
    Sun, Xiangkun
    Xu, Ke
    Liu, Yuanchao
    Tian, Ye
    Zhang, Xingyi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (04): : 2919 - 2934
  • [26] A surrogate evolutionary neural architecture search algorithm for graph neural networks
    Liu, Yang
    Liu, Jing
    APPLIED SOFT COMPUTING, 2023, 144
  • [27] NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search
    Qin, Yijian
    Zhang, Ziwei
    Wang, Xin
    Zhang, Zeyang
    Zhu, Wenwu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [28] CURIOUS: Efficient Neural Architecture Search Based on a Performance Predictor and Evolutionary Search
    Hassantabar, Shayan
    Dai, Xiaoliang
    Jha, Niraj K.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (11) : 4975 - 4990
  • [29] EQNAS: Evolutionary Quantum Neural Architecture Search for Image Classification
    Li, Yangyang
    Liu, Ruijiao
    Hao, Xiaobin
    Shang, Ronghua
    Zhao, Peixiang
    Jiao, Licheng
    NEURAL NETWORKS, 2023, 168 : 471 - 483
  • [30] Guided evolutionary neural architecture search with efficient performance estimation
    Lopes, Vasco
    Santos, Miguel
    Degardin, Bruno
    Alexandre, Luis A.
    NEUROCOMPUTING, 2024, 584