Eye Gaze Correction Using Generative Adversarial Networks

被引:0
|
作者
Yamamoto, Takahiko [1 ]
Seo, Masataka [1 ]
Kitajima, Toshihiko [2 ]
Chen, Yen-Wei [1 ]
机构
[1] Ritsumeikan Univ, Grad Sch Informat Sci & Engn, Kusatsu, Shiga, Japan
[2] Sumsung R&D Inst Japan, Osaka, Japan
关键词
deep learning; image-to-image translation; gaze correction; Generative Adversarial Net(GAN); Conditional GAN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Eye gaze correction is an important topic in video teleconference and video chart in order to keep the eye contact. In this paper, we propose to use a generative adversarial networks for eye gaze correction. We use pairs of front facial image (idea camera setting) and real facial image (real camera setting) to training the network. By using the trained network, we can generate a gaze corrected facial image (front facial image) for any real facial image. Experiments demonstrated the effectiveness of our proposed method.
引用
收藏
页码:276 / 277
页数:2
相关论文
共 50 条
  • [41] Radar Image Prediction Using Generative Adversarial Networks
    Han, Lei
    Fang, Liyuan
    Zhang, Wei
    Ge, Yorong
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [42] Online Signature Profiling Using Generative Adversarial Networks
    Vorugunti, Chandra Sekhar
    Mukherjee, Prerana
    Pulabaigari, Viswanath
    2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [43] SPEECH BANDWIDTH EXTENSION USING GENERATIVE ADVERSARIAL NETWORKS
    Li, Sen
    Villette, Stephane
    Ramadas, Pravin
    Sinder, Daniel J.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5029 - 5033
  • [44] Improving ECG Classification Using Generative Adversarial Networks
    Golany, Tomer
    Lavee, Gal
    Yarden, Shai Tejman
    Radinsky, Kira
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13280 - 13285
  • [45] Anonymising Pathology Data using Generative Adversarial Networks
    Morrison, David
    Harris-Birtill, David
    MEDICAL IMAGING 2022: DIGITAL AND COMPUTATIONAL PATHOLOGY, 2022, 12039
  • [46] ROBUST SPEECH RECOGNITION USING GENERATIVE ADVERSARIAL NETWORKS
    Sriram, Anuroop
    Jun, Heewoo
    Gaur, Yashesh
    Satheesh, Sanjeev
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5639 - 5643
  • [47] Clustering Using Conditional Generative Adversarial Networks (cGANs)
    Ruzicka, Marek
    Dopiriak, Matus
    2023 33RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, RADIOELEKTRONIKA, 2023,
  • [48] Monocular Depth Prediction using Generative Adversarial Networks
    Kumar, Arun C. S.
    Bhandarkar, Suchendra M.
    Prasad, Mukta
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 413 - 421
  • [49] Compressing PDF sets using generative adversarial networks
    Stefano Carrazza
    Juan Cruz-Martinez
    Tanjona R. Rabemananjara
    The European Physical Journal C, 2021, 81
  • [50] Restoring Raindrops Using Attentive Generative Adversarial Networks
    Yang, Hee-Deok
    APPLIED SCIENCES-BASEL, 2021, 11 (15):