Eye Gaze Correction Using Generative Adversarial Networks

被引:0
|
作者
Yamamoto, Takahiko [1 ]
Seo, Masataka [1 ]
Kitajima, Toshihiko [2 ]
Chen, Yen-Wei [1 ]
机构
[1] Ritsumeikan Univ, Grad Sch Informat Sci & Engn, Kusatsu, Shiga, Japan
[2] Sumsung R&D Inst Japan, Osaka, Japan
关键词
deep learning; image-to-image translation; gaze correction; Generative Adversarial Net(GAN); Conditional GAN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Eye gaze correction is an important topic in video teleconference and video chart in order to keep the eye contact. In this paper, we propose to use a generative adversarial networks for eye gaze correction. We use pairs of front facial image (idea camera setting) and real facial image (real camera setting) to training the network. By using the trained network, we can generate a gaze corrected facial image (front facial image) for any real facial image. Experiments demonstrated the effectiveness of our proposed method.
引用
收藏
页码:276 / 277
页数:2
相关论文
共 50 条
  • [31] Learning to Distort Images Using Generative Adversarial Networks
    Chen, Li-Heng
    Bampis, Christos G.
    Li, Zhi
    Bovik, Alan C.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 2144 - 2148
  • [32] Brain Tumor Segmentation Using Generative Adversarial Networks
    Ali, Abid
    Sharif, Muhammad
    Muhammad Shahzad Faisal, Ch
    Rizwan, Atif
    Atteia, Ghada
    Alabdulhafith, Maali
    IEEE ACCESS, 2024, 12 : 183525 - 183541
  • [33] Conditional Independence Testing using Generative Adversarial Networks
    Bellot, Alexis
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [34] A Method Using Generative Adversarial Networks for Robustness Optimization
    Feldkamp, Niclas
    Bergmann, Soeren
    Conrad, Florian
    Strassburger, Steffen
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2022, 32 (02):
  • [35] Mixed Data Imputation Using Generative Adversarial Networks
    Khan, Wasif
    Zaki, Nazar
    Ahmad, Amir
    Masud, Mohammad Mehedy
    Ali, Luqman
    Ali, Nasloon
    Ahmed, Luai A.
    IEEE ACCESS, 2022, 10 : 124475 - 124490
  • [36] Recognizing English Cursive Using Generative Adversarial Networks
    Yu, Xinrui
    Saniie, Jafar
    2020 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2020, : 293 - 296
  • [37] Human Video Synthesis Using Generative Adversarial Networks
    Azeem, Abdullah
    Riaz, Waqar
    Siddique, Abubakar
    Saifullah
    Junaid, Tahir
    FIFTH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2020, 11526
  • [38] CALPAGAN: Calorimetry for Particles Using Generative Adversarial Networks
    Simsek, Ebru
    Isildak, Bora
    Dogru, Anil
    Aydogan, Reyhan
    Bayrak, Burak
    Ertekin, Seyda
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2024, 2024 (08):
  • [39] Plasmonic sensor using generative adversarial networks integration
    Islam, Nazrul
    Hasan, Mia Mohammad Shoaib
    Shibly, Imam Hossain
    Rashid, Bajlur
    Abu Yousuf, Mohammad
    Haider, Firoz
    Aoni, Rifat Ahmmed
    Ahmed, Rajib
    OPTICS EXPRESS, 2024, 32 (20): : 34184 - 34198
  • [40] Phase Retrieval Using Conditional Generative Adversarial Networks
    Uelwer, Tobias
    Oberstrass, Alexander
    Harmeling, Stefan
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 731 - 738