Anticorrelations from power-law spectral disorder and conditions for an Anderson transition

被引:25
|
作者
Petersen, Gregory M. [1 ]
Sandler, Nancy
机构
[1] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 19期
基金
美国国家科学基金会;
关键词
LOCALIZATION-DELOCALIZATION TRANSITION; RANGE CORRELATED DISORDER; SCHRODINGER-OPERATORS; SCALING THEORY; MOBILITY EDGE; KOTANI THEORY; SYSTEMS; POTENTIALS; ABSENCE; MODEL;
D O I
10.1103/PhysRevB.87.195443
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We resolve an apparent contradiction between numeric and analytic results for one-dimensional disordered systems with power-law spectral correlations. The conflict arises when considering rigorous results that constrain the set of correlation functions yielding metallic states to those with nonzero values in the thermodynamic limit. By analyzing the scaling law for a model correlated disorder that produces a mobility edge, we show that no contradiction exists as the correlation function exhibits strong anticorrelations in the thermodynamic limit. Moreover, the associated scaling function reveals a size-dependent correlation with a smoothening of disorder amplitudes as the system size increases.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Quantum dissipation from power-law memory
    Tarasov, Vasily E.
    ANNALS OF PHYSICS, 2012, 327 (06) : 1719 - 1729
  • [42] Imitation games: power-law sensitivity to initial conditions and nonextensivity
    Papa, Andres R.R.
    Tsallis, Constantino
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (04):
  • [43] Imitation games: Power-law sensitivity to initial conditions and nonextensivity
    Papa, ARR
    Tsallis, C
    PHYSICAL REVIEW E, 1998, 57 (04): : 3923 - 3927
  • [44] Exponential and power-law hierarchies from supergravity
    Kehagias, A
    PHYSICS LETTERS B, 1999, 469 (1-4) : 123 - 128
  • [45] Power-law inflation from the rolling tachyon
    Feinstein, A
    PHYSICAL REVIEW D, 2002, 66 (06)
  • [46] POWER-LAW DISTRIBUTIONS OF SPECTRAL DENSITY AND HIGHER-ORDER ENTROPIES
    ANISHCHENKO, VS
    EBELING, W
    NEIMAN, AB
    CHAOS SOLITONS & FRACTALS, 1994, 4 (01) : 69 - 81
  • [47] Flexible spectral methods for the generation of random fields with power-law semivariograms
    Johannes Bruining
    Diederik van Batenburg
    Larry W. Lake
    An Ping Yang
    Mathematical Geology, 1997, 29 : 823 - 848
  • [48] Power-law tailed spectra from equilibrium
    Biro, T. S.
    Purcsel, G.
    Gyorgyi, Geza
    Jakovac, Antal
    Schram, Zsolt
    NUCLEAR PHYSICS A, 2006, 774 : 845 - 848
  • [49] Spectral properties of empirical covariance matrices for data with power-law tails
    Burda, Zdzislaw
    Gorlich, Andrzej T.
    Waclaw, Bartlomiej
    PHYSICAL REVIEW E, 2006, 74 (04):
  • [50] Spectral packing decomposition of CMV matrices through power-law subordinacy
    Peng, Yaxin
    Guo, Shuzheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (09)