Anticorrelations from power-law spectral disorder and conditions for an Anderson transition

被引:25
|
作者
Petersen, Gregory M. [1 ]
Sandler, Nancy
机构
[1] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 19期
基金
美国国家科学基金会;
关键词
LOCALIZATION-DELOCALIZATION TRANSITION; RANGE CORRELATED DISORDER; SCHRODINGER-OPERATORS; SCALING THEORY; MOBILITY EDGE; KOTANI THEORY; SYSTEMS; POTENTIALS; ABSENCE; MODEL;
D O I
10.1103/PhysRevB.87.195443
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We resolve an apparent contradiction between numeric and analytic results for one-dimensional disordered systems with power-law spectral correlations. The conflict arises when considering rigorous results that constrain the set of correlation functions yielding metallic states to those with nonzero values in the thermodynamic limit. By analyzing the scaling law for a model correlated disorder that produces a mobility edge, we show that no contradiction exists as the correlation function exhibits strong anticorrelations in the thermodynamic limit. Moreover, the associated scaling function reveals a size-dependent correlation with a smoothening of disorder amplitudes as the system size increases.
引用
收藏
页数:5
相关论文
共 50 条