Waist size for cusps in hyperbolic 3-manifolds

被引:17
|
作者
Adam, CC [1 ]
机构
[1] Williams Coll, Bronfman Sci Ctr, Dept Math, Williamstown, MA 01267 USA
基金
美国国家科学基金会;
关键词
hyperbolic; 3-manifold; cusp; figure-eight knot; waist size;
D O I
10.1016/S0040-9383(00)00034-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The waist size of a cusp in an orientable hyperbolic 3-manifold is the length of the shortest nontrivial curve in the maximal cusp boundary generated by a parabolic isometry. A variety of results on waist size are proved. In particular, it is shown that the smallest possible waist size, which is 1, is realized only by the cusp in the figure-eight knot complement. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:257 / 270
页数:14
相关论文
共 50 条
  • [21] Klein slopes on hyperbolic 3-manifolds
    Matignon, Daniel
    Sayari, Nabil
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 : 419 - 447
  • [22] Hyperbolic 3-Manifolds Boot Camp
    Adams, Colin
    MATHEMATICAL INTELLIGENCER, 2021, 43 (01): : 40 - 41
  • [23] Group Actions on Hyperbolic 3-manifolds
    王诗宬
    数学进展, 1991, (01) : 77 - 85
  • [24] Verified Computations for Hyperbolic 3-Manifolds
    Hoffman, Neil
    Ichihara, Kazuhiro
    Kashiwagi, Masahide
    Masai, Hidetoshi
    Oishi, Shin'ichi
    Takayasu, Akitoshi
    EXPERIMENTAL MATHEMATICS, 2016, 25 (01) : 66 - 78
  • [25] Norms on the cohomology of hyperbolic 3-manifolds
    Jeffrey F. Brock
    Nathan M. Dunfield
    Inventiones mathematicae, 2017, 210 : 531 - 558
  • [26] On certain classes of hyperbolic 3-manifolds
    Alberto Cavicchioli
    Luisa Paoluzzi
    manuscripta mathematica, 2000, 101 : 457 - 494
  • [27] THE SPECTRUM OF DEGENERATING HYPERBOLIC 3-MANIFOLDS
    CHAVEL, I
    DODZIUK, J
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 39 (01) : 123 - 137
  • [28] TORI WITH HYPERBOLIC DYNAMICS IN 3-MANIFOLDS
    Rodriguez Hertz, Federico
    Rodriguez Hertz, Maria Alejandra
    Ures, Raul
    JOURNAL OF MODERN DYNAMICS, 2011, 5 (01) : 185 - 202
  • [29] Thick surfaces in hyperbolic 3-manifolds
    Masters, Joseph D.
    GEOMETRIAE DEDICATA, 2006, 119 (01) : 17 - 33
  • [30] Volumes of tubes in hyperbolic 3-manifolds
    Gabai, D
    Meyerhoff, GR
    Milley, P
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 57 (01) : 23 - 46