Localization by nonlinear phase preparation and k-space trajectory design

被引:27
|
作者
Witschey, Walter R. T. [1 ]
Cocosco, Chris A. [1 ]
Gallichan, Daniel [1 ]
Schultz, Gerrit [1 ]
Weber, Hans [1 ]
Welz, Anna [1 ]
Hennig, Juergen [1 ]
Zaitsev, Maxim [1 ]
机构
[1] Univ Hosp Freiburg, Freiburg, Germany
关键词
heart; cardiovascular; brain; neurological; FRESNEL TRANSFORM; FIELD GRADIENTS; MRI; RECONSTRUCTION; SELECTION;
D O I
10.1002/mrm.23146
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A technique is described to localize MR signals from a target volume using nonlinear pulsed magnetic fields and spatial encoding trajectories designed using local k-space theory. The concept of local k-space is outlined theoretically, and this principle is applied to simulated phantom and cardiac MRI data in the presence of surface and quadrupolar gradient coil phase modulation. Phantom and in vivo human brain images are obtained using a custom, high-performance quadrupolar gradient coil integrated with a whole-body 3-T MRI system to demonstrate target localization using three-dimensional T?2*-weighted spoiled gradient echo, two-dimensional segmented, multiple gradient encoded spin echo, and three-dimensional balanced steady-state free precession acquisitions. This method may provide a practical alternative to selective radiofrequency excitation at ultra-high-field, particularly for steady-state applications where repetition time (TR) must be minimized and when the amount of energy deposited in human tissues is prohibitive. There are several limitations to the approach including the spatial variation in resolution, high frequency aliasing artifacts, and spatial variation in echo times and contrast. Magn Reson Med, 2012. (c) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:1620 / 1632
页数:13
相关论文
共 50 条
  • [1] Design of a logarithmic k-space spiral trajectory
    Cline, HE
    Zong, XL
    Gai, N
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (06) : 1130 - 1135
  • [2] K-SPACE TRAJECTORY DESIGN FOR REDUCED MRI SCAN TIME
    Sharma, Shubham
    Hari, K. V. S.
    Leus, Geert
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1120 - 1124
  • [3] Review: K-Space Trajectory Development
    Zhu, Yanchun
    Gao, Song
    Cheng, Liuquan
    Bao, Shanglian
    [J]. PROCEEDINGS OF 2013 IEEE INTERNATIONAL CONFERENCE ON MEDICAL IMAGING PHYSICS AND ENGINEERING (ICMIPE), 2013, : 356 - 360
  • [4] Three dimensional k-space trajectory design using genetic algorithms
    Sabat, S
    Mir, R
    Guarini, M
    Guesalaga, A
    Irarrazaval, P
    [J]. MAGNETIC RESONANCE IMAGING, 2003, 21 (07) : 755 - 764
  • [5] A novel k-space trajectory measurement technique
    Zhang, YT
    Hetherington, HP
    Stokely, EM
    Mason, GF
    Twieg, DB
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) : 999 - 1004
  • [6] Motion correction properties of the shells k-space trajectory
    Shu, Yunhong
    Elliott, Andrew M.
    Riederer, Stephen J.
    Bernstein, Matt A.
    [J]. MAGNETIC RESONANCE IMAGING, 2006, 24 (06) : 739 - 749
  • [7] Improved k-space trajectory measurement with signal shifting
    Beaumont, Marine
    Lamalle, Laurent
    Segebarth, Christoph
    Barbier, Emmanuel L.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (01) : 200 - 205
  • [8] Improvement of spiral MRI with the measured k-space trajectory
    Ding, XP
    Tkach, J
    Ruggieri, P
    Perl, J
    Masaryk, T
    [J]. JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1997, 7 (05): : 938 - 940
  • [9] Spatial solitary waves and nonlinear k-space
    Blair, SM
    [J]. SOLITON-DRIVEN PHOTONICS, 2001, 31 : 245 - 249
  • [10] Simple correction method for k-space trajectory deviations in MRI
    Duyn, JH
    Yang, YH
    Frank, JA
    van der Veen, JW
    [J]. JOURNAL OF MAGNETIC RESONANCE, 1998, 132 (01) : 150 - 153