Localization by nonlinear phase preparation and k-space trajectory design

被引:27
|
作者
Witschey, Walter R. T. [1 ]
Cocosco, Chris A. [1 ]
Gallichan, Daniel [1 ]
Schultz, Gerrit [1 ]
Weber, Hans [1 ]
Welz, Anna [1 ]
Hennig, Juergen [1 ]
Zaitsev, Maxim [1 ]
机构
[1] Univ Hosp Freiburg, Freiburg, Germany
关键词
heart; cardiovascular; brain; neurological; FRESNEL TRANSFORM; FIELD GRADIENTS; MRI; RECONSTRUCTION; SELECTION;
D O I
10.1002/mrm.23146
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A technique is described to localize MR signals from a target volume using nonlinear pulsed magnetic fields and spatial encoding trajectories designed using local k-space theory. The concept of local k-space is outlined theoretically, and this principle is applied to simulated phantom and cardiac MRI data in the presence of surface and quadrupolar gradient coil phase modulation. Phantom and in vivo human brain images are obtained using a custom, high-performance quadrupolar gradient coil integrated with a whole-body 3-T MRI system to demonstrate target localization using three-dimensional T?2*-weighted spoiled gradient echo, two-dimensional segmented, multiple gradient encoded spin echo, and three-dimensional balanced steady-state free precession acquisitions. This method may provide a practical alternative to selective radiofrequency excitation at ultra-high-field, particularly for steady-state applications where repetition time (TR) must be minimized and when the amount of energy deposited in human tissues is prohibitive. There are several limitations to the approach including the spatial variation in resolution, high frequency aliasing artifacts, and spatial variation in echo times and contrast. Magn Reson Med, 2012. (c) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:1620 / 1632
页数:13
相关论文
共 50 条
  • [41] MODULI OVER K-SPACE
    SLUGIN, SN
    [J]. DOKLADY AKADEMII NAUK SSSR, 1961, 139 (05): : 1059 - &
  • [42] Compressive k-Space Tomography
    Ross, Dylan D.
    Murakowski, Janusz
    Ryan, Conor J.
    Schneider, Garrett J.
    Prather, Dennis W.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (19) : 4478 - 4485
  • [43] K-space sampling strategies
    J. Hennig
    [J]. European Radiology, 1999, 9 : 1020 - 1031
  • [44] DIFFERENTIATION OF K-SPACE MAPPINGS
    SOBOLEV, VI
    SHCHERBIN, VM
    [J]. DOKLADY AKADEMII NAUK SSSR, 1975, 225 (05): : 1020 - 1022
  • [45] Lasing high in k-space
    Jérôme Faist
    [J]. Nature Photonics, 2009, 3 : 11 - 12
  • [46] ABSTRACT K-SPACE AND J-SPACE
    CWIKEL, M
    PEETRE, J
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1981, 60 (01): : 1 - 49
  • [47] OTUP workflow: target specific optimization of the transmit k-space trajectory for flexible universal parallel transmit RF pulse design
    Geldschlaeger, Ole
    Bosch, Dario
    Henning, Anke
    [J]. NMR IN BIOMEDICINE, 2022, 35 (08)
  • [48] Coil combination using linear deconvolution in k-space for phase imaging
    Zheng, Qian
    Xu, Lin
    Xiong, Liang
    Cui, Xiao
    Nan, Jiaofen
    He, Taigang
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2019, 9 (11) : 1792 - 1803
  • [49] Optimization of k-Space Trajectories for Compressed Sensing by Bayesian Experimental Design
    Seeger, Matthias
    Nickisch, Hannes
    Pohmann, Rolf
    Schoelkopf, Bernhard
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (01) : 116 - 126
  • [50] Motion correction using the k-space phase difference of orthogonal acquisitions
    Welch, EB
    Felmlee, JP
    Ehman, RL
    Manduca, A
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (01) : 147 - 156