Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning

被引:684
|
作者
Abramoff, Michael David [1 ,2 ,3 ]
Lou, Yiyue [4 ]
Erginay, Ali [5 ]
Clarida, Warren [3 ]
Amelon, Ryan [3 ]
Folk, James C. [1 ,3 ]
Niemeijer, Meindert [3 ]
机构
[1] Univ Iowa, Hosp & Clin, Dept Ophthalmol & Visual Sci, Iowa City, IA USA
[2] Iowa City Vet Affairs Med Ctr, Iowa City, IA USA
[3] IDx LLC, Iowa City, IA USA
[4] Univ Iowa, Dept Stat, Coll Publ Hlth, Iowa City, IA USA
[5] Hop Lariboisiere, AP HP, Serv Ophtalmol, Paris, France
关键词
diabetic retinopathy; detection; deep learning; algorithm; diabetes; MACULAR EDEMA; SCREENING EXAMINATIONS; IMAGE-ANALYSIS; TELEMEDICINE; PHOTOGRAPHY;
D O I
10.1167/iovs.16-19964
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE. To compare performance of a deep-learning enhanced algorithm for automated detection of diabetic retinopathy (DR), to the previously published performance of that algorithm, the Iowa Detection Program (IDP)-without deep learning components-on the same publicly available set of fundus images and previously reported consensus reference standard set, by three US Board certified retinal specialists. METHODS. We used the previously reported consensus reference standard of referable DR (rDR), defined as International Clinical Classification of Diabetic Retinopathy moderate, severe nonproliferative (NPDR), proliferative DR, and/or macular edema (ME). Neither Messidor-2 images, nor the three retinal specialists setting the Messidor-2 reference standard were used for training IDx-DR version X2.1. Sensitivity, specificity, negative predictive value, area under the curve (AUC), and their confidence intervals (CIs) were calculated. RESULTS. Sensitivity was 96.8% (95% CI: 93.3%-98.8%), specificity was 87.0% (95% CI: 84.2%-89.4%), with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95% CI: 97.8%-99.6%). No cases of severe NPDR, PDR, or ME were missed. The AUC was 0.980 (95% CI: 0.968-0.992). Sensitivity was not statistically different from published IDP sensitivity, which had a CI of 94.4% to 99.3%, but specificity was significantly better than the published IDP specificity CI of 55.7% to 63.0%. CONCLUSIONS. A deep-learning enhanced algorithm for the automated detection of DR, achieves significantly better performance than a previously reported, otherwise essentially identical, algorithm that does not employ deep learning. Deep learning enhanced algorithms have the potential to improve the efficiency of DR screening, and thereby to prevent visual loss and blindness from this devastating disease.
引用
收藏
页码:5200 / 5206
页数:7
相关论文
共 50 条
  • [41] Deep Learning Based Models for Detection of Diabetic Retinopathy
    Akgul, Ismail
    Yavuz, Omer Cagri
    Yavuz, Ugur
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2023, 17 (04): : 581 - 587
  • [42] On Deep Learning based algorithms for Detection of Diabetic Retinopathy
    Thanati, Haneesha
    Chalakkal, Renoh Johnson
    Abdulla, Waleed H.
    2019 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2019, : 197 - 203
  • [43] Diabetic Retinopathy Detection Using Deep Learning Models
    Kanakaprabha, S.
    Radha, D.
    Santhanalakshmi, S.
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 75 - 90
  • [44] A deep learning model framework for diabetic retinopathy detection
    Padmapriya M.
    Pasupathy S.
    Sumathi R.
    Punitha V.
    International Journal of Networking and Virtual Organisations, 2022, 27 (02): : 107 - 124
  • [45] Diabetic retinopathy detection by optimized deep learning model
    Venubabu Rachapudi
    K. Subba Rao
    T. Subha Mastan Rao
    P. Dileep
    T.L. Deepika Roy
    Multimedia Tools and Applications, 2023, 82 : 27949 - 27971
  • [46] A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection
    Qummar, Sehrish
    Khan, Fiaz Gul
    Shah, Sajid
    Khan, Ahmad
    Shamshirband, Shahaboddin
    Rehman, Zia Ur
    Khan, Iftikhar Ahmed
    Jadoon, Waqas
    IEEE ACCESS, 2019, 7 : 150530 - 150539
  • [47] A Lesion-Based Diabetic Retinopathy Detection Through Hybrid Deep Learning Model
    Jabbar, Ayesha
    Bin Liaqat, Hannan
    Akram, Aftab
    Sana, Muhammad Usman
    Azpiroz, Irma Dominguez
    Diez, Isabel De La Torre
    Ashraf, Imran
    IEEE ACCESS, 2024, 12 : 40019 - 40036
  • [48] Democratizing Deep Learning Research Through Large Publicly Available Datasets and Tools
    Dubis, Adam M.
    Arikan, Mustafa
    Sallo, Ferenc
    Montesel, Andrea
    Hagag, Ahmed M.
    Ahmed, Hend M.
    Book, Marius
    Faatz, Hendrik
    Cicinelli, Maria
    Ongun, Sevim
    Fawzi, Amani A.
    Lilaonitkul, Watjana
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [49] Automated Detection of Diabetic Retinopathy through Image Feature Extraction
    Rao, Akshatha M.
    Bhandarkar, Rekha
    Manjunath, T. C.
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRONICS, COMPUTERS AND COMMUNICATIONS (ICAECC), 2014,
  • [50] Automated detection of diabetic retinopathy using machine learning classifiers
    Alabdulwahhab, K. M.
    Sami, W.
    Mehmood, T.
    Meo, S. A.
    Alasbali, T. A.
    Alwadani, F. A.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2021, 25 (02) : 583 - 590