On the topological Helly theorem

被引:6
|
作者
Karimov, UH
Repovs, D
机构
[1] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana 1001, Slovenia
[2] Tajik Acad Sci, Inst Math, Dushanbe 734063, Tajikistan
关键词
simply connected planar sets; planar absolute retracts; Helly-type theorems; planar continua; acyclicity; asphericity; singular cells; cell-like connectedness;
D O I
10.1016/j.topol.2005.01.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result of this paper is the following theorem, related to the missing link in the proof of the topological version of the classical result of Helly: Let {X-i}(i=0)(2) be any family of simply connected compact subsets of R-2 such that for every i, j is an element of {0, 1, 2} the intersections X-i boolean AND X-j are path connected and boolean AND(2)(i=0) X-i is nonempty. Then for every two points in the intersection boolean AND(2)(i=0) X-i there exists a cell-like compactum connecting these two points, in particular the intersection boolean AND(2)(i=0)=0 X-i is a connected set. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1614 / 1621
页数:8
相关论文
共 50 条
  • [42] HELLY THEOREM FOR H-CONVEX SETS
    BOLTYANSKII, VG
    [J]. DOKLADY AKADEMII NAUK SSSR, 1976, 226 (02): : 249 - 252
  • [43] Acknowledgement of priority - A fractional Helly theorem for boxes
    Barany, I.
    Fodor, F.
    Martinez-Perez, A.
    Montejano, L.
    Oliveros, D.
    Por, A.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 67 : 1 - 1
  • [44] A Helly-type theorem for simple polygons
    Breen, M
    [J]. GEOMETRIAE DEDICATA, 1996, 60 (03) : 283 - 288
  • [45] Helly's theorem: New variations and applications
    Amenta, Nina
    De Loera, Jesus A.
    Soberon, Pablo
    [J]. ALGEBRAIC AND GEOMETRIC METHODS IN DISCRETE MATHEMATICS, 2017, 685 : 55 - 95
  • [46] A Helly theorem for intersections of orthogonally starshaped sets
    Breen, M
    [J]. ARCHIV DER MATHEMATIK, 2003, 80 (06) : 664 - 672
  • [47] A Helly theorem for intersections of orthogonally starshaped sets
    Marilyn Breen
    [J]. Archiv der Mathematik, 2003, 80 : 664 - 672
  • [48] HELLY-TYPE THEOREM FOR LINEAR COLLINEATIONS
    SAYRAFIEZADEH, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (07): : 742 - 744
  • [49] A SELECTION THEOREM OF HELLY TYPE AND ITS APPLICATIONS
    BEHRENDS, E
    NIKODEM, K
    [J]. STUDIA MATHEMATICA, 1995, 116 (01) : 43 - 48
  • [50] A HELLY THEOREM IN METRIC SPACES AND MAJORED OPERATIONS
    Duchon, Miloslav
    Malicky, Peter
    [J]. REAL FUNCTION 09: MEASURES, INTEGRATION, HARMONIC ANALYSIS, TOPOLOGY AND MATHEMATICAL ECONOMICS, 2010, 46 : 111 - +