On the topological Helly theorem

被引:6
|
作者
Karimov, UH
Repovs, D
机构
[1] Univ Ljubljana, Inst Math Phys & Mech, Ljubljana 1001, Slovenia
[2] Tajik Acad Sci, Inst Math, Dushanbe 734063, Tajikistan
关键词
simply connected planar sets; planar absolute retracts; Helly-type theorems; planar continua; acyclicity; asphericity; singular cells; cell-like connectedness;
D O I
10.1016/j.topol.2005.01.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result of this paper is the following theorem, related to the missing link in the proof of the topological version of the classical result of Helly: Let {X-i}(i=0)(2) be any family of simply connected compact subsets of R-2 such that for every i, j is an element of {0, 1, 2} the intersections X-i boolean AND X-j are path connected and boolean AND(2)(i=0) X-i is nonempty. Then for every two points in the intersection boolean AND(2)(i=0) X-i there exists a cell-like compactum connecting these two points, in particular the intersection boolean AND(2)(i=0)=0 X-i is a connected set. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1614 / 1621
页数:8
相关论文
共 50 条
  • [11] Helly theorem and related results
    Zelinskii Yu.B.
    [J]. Ukrainian Mathematical Journal, 2002, 54 (1) : 149 - 153
  • [12] A HELLY TYPE THEOREM FOR HYPERSURFACES
    DEZA, M
    FRANKL, P
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 45 (01) : 27 - 30
  • [13] GENERALIZATION OF HELLY SELECTION THEOREM
    SCHRADER, K
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (03) : 415 - &
  • [14] A RADON THEOREM FOR HELLY GRAPHS
    BANDELT, HJ
    PESCH, E
    [J]. ARCHIV DER MATHEMATIK, 1989, 52 (01) : 95 - 98
  • [15] On a theorem of E. Helly
    Fuchino, S
    Plewik, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) : 491 - 497
  • [16] HELLY TYPE THEOREM ON SPHERE
    KATCHALSKI, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 66 (01) : 119 - 122
  • [17] A fractional Helly theorem for boxes
    Barany, I.
    Fodor, F.
    Martinez-Perez, A.
    Montejano, L.
    Oliveros, D.
    Por, A.
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (03): : 221 - 224
  • [18] A note on the colorful fractional Helly theorem
    Kim, Minki
    [J]. DISCRETE MATHEMATICS, 2017, 340 (01) : 3167 - 3170
  • [19] Radon numbers and the fractional Helly theorem
    Andreas F. Holmsen
    Donggyu Lee
    [J]. Israel Journal of Mathematics, 2021, 241 : 433 - 447
  • [20] HOMOTOPY FINITENESS THEOREMS AND HELLY THEOREM
    GREENE, RE
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 1994, 4 (03) : 317 - 325