Schottky barrier and attenuation length for hot hole injection in nonepitaxial Au on p-type GaAs

被引:3
|
作者
Sitnitsky, Ilona [1 ]
Garramone, John J. [1 ]
Abel, Joseph [1 ]
Xu, Peng [2 ]
Barber, Steven D. [2 ]
Ackerman, Matt L. [2 ]
Schoelz, J. Kevin [2 ]
Thibado, Paul M. [2 ]
LaBella, Vincent P. [1 ]
机构
[1] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA
[2] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
来源
基金
美国国家科学基金会;
关键词
ELECTRON-EMISSION MICROSCOPY; INTERFACES; SPECTROSCOPY; SCATTERING; TRANSPORT; SCALE;
D O I
10.1116/1.4734307
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ballistic electron emission microscopy (BEEM) was performed to obtain current versus bias characteristics of nonepitaxial nanometer-thick Au on p-type GaAs in order to accurately measure the local Schottky barrier height. Hole injection BEEM data were averaged from thousands of spectra for various Au film thicknesses and then used to determine the attenuation length of the energetic charge carriers as a function of tip bias. The authors report an increase in attenuation length at biases near the Schottky barrier, providing evidence for the existence of coherent BEEM currents in Schottky diodes. These results provide additional evidence for the conservation of the parallel momentum of charge carriers at the metal-semiconductor interface. (C) 2012 American Vacuum Society. [http://dx.doi.org/10.1116/1.4734307]
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Hole mobilities and the effective Hall factor in p-type GaAs
    Wenzel, M
    Irmer, G
    Monecke, J
    Siegel, W
    JOURNAL OF APPLIED PHYSICS, 1997, 81 (12) : 7810 - 7816
  • [22] Schottky diode performance of an Au/Pd/GaAs device fabricated by deposition of monodisperse palladium nanoparticles over a p-type GaAs substrate
    Deniz, Ali Riza
    Caldiran, Zakir
    Metin, Onder
    Can, Hasan
    Meral, Kadem
    Aydogan, Sakir
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 27 : 163 - 169
  • [23] HIGH-CONCENTRATION CE DOPING AT N-TYPE AND P-TYPE AL/GAAS SCHOTTKY-BARRIER INTERFACES
    FOXMAN, EB
    IKARASHI, N
    HIROSE, K
    APPLIED PHYSICS LETTERS, 1991, 59 (19) : 2403 - 2405
  • [24] Evaluation of Schottky barrier height of TiN/p-type Si(100)
    Pelleg, J
    Douhin, A
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2004, 22 (05): : 1980 - 1983
  • [25] Effect of surface treatment on Schottky barrier height of p-type GaN
    Kim, JK
    Lee, JL
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (03) : G209 - G211
  • [26] Simulation Study of Germanium p-Type Nanowire Schottky Barrier MOSFETs
    Lee, Jaehyun
    Shin, Mincheol
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (03) : 342 - 344
  • [27] GOLD p-TYPE Si SCHOTTKY BARRIER INFRARED DETECTOR.
    Nomura, Yuji
    Hase, Nobuyasu
    Yamaka, Eiso
    Infrared Physics, 1977, 17 (04): : 233 - 234
  • [28] Edge termination techniques for p-type diamond Schottky barrier diodes
    Ikeda, K.
    Umezawa, H.
    Shikata, S.
    DIAMOND AND RELATED MATERIALS, 2008, 17 (4-5) : 809 - 812
  • [29] p-Type Schottky Contacts for Graphene Adjustable-Barrier Phototransistors
    Strobel, Carsten
    Chavarin, Carlos Alvarado
    Knaut, Martin
    Albert, Matthias
    Heinzig, Andre
    Gummadi, Likhith
    Wenger, Christian
    Mikolajick, Thomas
    NANOMATERIALS, 2024, 14 (13)
  • [30] High barrier metallic polymer p-type silicon Schottky diodes
    Onganer, Y
    Saglam, M
    Turut, A
    Efeoglu, H
    Tuzemen, S
    SOLID-STATE ELECTRONICS, 1996, 39 (05) : 677 - 680