Confined Crystals of the Smallest Phase-Change Material

被引:62
|
作者
Giusca, Cristina E. [1 ]
Stolojan, Vlad [1 ]
Sloan, Jeremy [2 ]
Boerrnert, Felix [3 ]
Shiozawa, Hidetsugu [1 ]
Sader, Kasim [4 ]
Ruemmeli, Mark H. [3 ,5 ]
Buechner, Bernd [3 ]
Silva, S. Ravi P. [1 ]
机构
[1] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[3] IFW Dresden, D-01171 Dresden, Germany
[4] UK SuperSTEM, Daresbury Lab, Warrington WA4 4AD, Cheshire, England
[5] Tech Univ Dresden, D-01062 Dresden, Germany
基金
英国工程与自然科学研究理事会;
关键词
Phase-change materials; GeTe; carbon nanotubes; scanning tunneling microscopy; electron microscopy; WALLED CARBON NANOTUBES; RANDOM-ACCESS MEMORY; ELECTRONIC-STRUCTURE; NONVOLATILE; FILMS; DEPOSITION;
D O I
10.1021/nl4010354
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.
引用
收藏
页码:4020 / 4027
页数:8
相关论文
共 50 条
  • [41] Dynamics of the phase-change material GeTe across the structural phase transition
    T. Chatterji
    S. Rols
    U. D. Wdowik
    Frontiers of Physics, 2019, 14
  • [42] Phase field modeling of rapid crystallization in the phase-change material AIST
    Tabatabaei, Fatemeh
    Boussinot, Guillaume
    Spatschek, Robert
    Brener, Efim A.
    Apel, Markus
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (04)
  • [43] Dynamics of the phase-change material GeTe across the structural phase transition
    Chatterji, T.
    Rols, S.
    Wdowik, U. D.
    FRONTIERS OF PHYSICS, 2019, 14 (02)
  • [44] Advantages of SixSb2Te phase-change material and its applications in phase-change random access memory
    Gu, Yifeng
    Cheng, Yan
    Song, Sannian
    Zhang, Ting
    Song, Zhitang
    Liu, Xuyan
    Du, Xiaofeng
    Liu, Bo
    Feng, Songlin
    SCRIPTA MATERIALIA, 2011, 65 (07) : 622 - 625
  • [45] Direct programming of confined surface phonon polariton resonators with the plasmonic phase-change material In3SbTe2
    Conrads, Lukas
    Schueler, Luis
    Wirth, Konstantin G.
    Wuttig, Matthias
    Taubner, Thomas
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [46] Thermal Performance Measurement Procedure and Its Accuracy for Shape-Stabilized Phase-Change Material and Microcapsule Phase-Change Material Combined with Building Materials
    Kim, Hyun Bae
    Mae, Masayuki
    Choi, Youngjin
    SUSTAINABILITY, 2021, 13 (12)
  • [47] Bandwidth Reconfigurable THz Filter Employing Phase-Change Material
    Sanphuang, Varittha
    Ghalichechian, Nima
    Nahar, Niru K.
    Volakis, John L.
    2015 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2015, : 2289 - 2290
  • [48] Enabling switchable and multifunctional terahertz metasurfaces with phase-change material
    Wang, Dacheng
    Sun, Song
    Feng, Zheng
    Tan, Wei
    OPTICAL MATERIALS EXPRESS, 2020, 10 (09): : 2054 - 2065
  • [49] Transformations in phase-change memory material during thermal cycling
    Sherchenkov, A. A.
    Kozyukhin, S. A.
    Gorshkova, E. V.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2009, 11 (01): : 26 - 33
  • [50] Round-Robin Test of Paraffin Phase-Change Material
    S. Vidi
    H. Mehling
    F. Hemberger
    Th. Haussmann
    A. Laube
    International Journal of Thermophysics, 2015, 36 : 2518 - 2522