Confined Crystals of the Smallest Phase-Change Material

被引:62
|
作者
Giusca, Cristina E. [1 ]
Stolojan, Vlad [1 ]
Sloan, Jeremy [2 ]
Boerrnert, Felix [3 ]
Shiozawa, Hidetsugu [1 ]
Sader, Kasim [4 ]
Ruemmeli, Mark H. [3 ,5 ]
Buechner, Bernd [3 ]
Silva, S. Ravi P. [1 ]
机构
[1] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[3] IFW Dresden, D-01171 Dresden, Germany
[4] UK SuperSTEM, Daresbury Lab, Warrington WA4 4AD, Cheshire, England
[5] Tech Univ Dresden, D-01062 Dresden, Germany
基金
英国工程与自然科学研究理事会;
关键词
Phase-change materials; GeTe; carbon nanotubes; scanning tunneling microscopy; electron microscopy; WALLED CARBON NANOTUBES; RANDOM-ACCESS MEMORY; ELECTRONIC-STRUCTURE; NONVOLATILE; FILMS; DEPOSITION;
D O I
10.1021/nl4010354
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.
引用
收藏
页码:4020 / 4027
页数:8
相关论文
共 50 条
  • [31] EVALUATION OF UNVENTED PHASE-CHANGE MATERIAL TROMBE WALLS
    BOURDEAU, L
    REVUE DE PHYSIQUE APPLIQUEE, 1982, 17 (09): : 633 - 642
  • [32] Impregnation of Activated Carbon with Organic Phase-Change Material
    Bae, Jiyeol
    Kim, Suho
    Kim, Kwangsoo
    Baek, Soyoung
    MATERIALS, 2024, 17 (01)
  • [33] Study on the Heat Conduction of Phase-Change Material Microcapsules
    Zhao, Gangtao
    Xu, Xiaohui
    Qiu, Lin
    Zheng, Xinghua
    Tang, Dawei
    JOURNAL OF THERMAL SCIENCE, 2013, 22 (03) : 257 - 260
  • [34] Study on the Heat Conduction of Phase-Change Material Microcapsules
    Gangtao Zhao
    Xiaohui Xu
    Lin Qiu
    Xinghua Zheng
    Dawei Tang
    Journal of Thermal Science, 2013, 22 (03) : 257 - 260
  • [35] New Polymorphs of the Phase-Change Material Sodium Acetate
    Dittrich, Birger
    Bergmann, Justin
    Roloff, Peter
    Reiss, Guido J.
    CRYSTALS, 2018, 8 (05):
  • [36] A thermal diode and novel implementation in a phase-change material
    Pallecchi, E.
    Chen, Z.
    Fernandes, G. E.
    Wan, Y.
    Kim, J. H.
    Xu, J.
    MATERIALS HORIZONS, 2015, 2 (01) : 125 - 129
  • [37] Dynamic Dielectric Metasurfaces Incorporating Phase-Change Material
    Abdollahramezani, Sajjad
    Taghinejad, Hossein
    Nejad, Yashar Kiarashi
    Eftekhar, Ali A.
    Adibi, Ali
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [38] DISSIPATION IN PHASE-CHANGE SURFUSION IRREVERSIBLE PHASE-CHANGE
    FREMOND, M
    VISINTIN, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1985, 301 (18): : 1265 - 1268
  • [39] Experimental study on the phase change behavior of phase change material confined in pores
    Zhang, Dong
    Tian, Shengli
    Xiao, Deyan
    SOLAR ENERGY, 2007, 81 (05) : 653 - 660
  • [40] Elevated-Confined Phase-Change Random Access Memory Cells
    Koon, Lee Hock
    Shi Luping
    Rong, Zhao
    Yang Hongxin
    Guan, Lim Kian
    Li Jianming
    Chong, Chong Tow
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (04)