A WAVELET MULTIFRACTAL FORMALISM FOR SIMULTANEOUS SINGULARITIES OF FUNCTIONS

被引:6
|
作者
Aouidi, Jamil [1 ]
Ben Mabrouk, Anouar [2 ]
Ben Slimane, Mourad [3 ]
机构
[1] Preparatory Inst Mil Acad, Dept Math, Sousse 4029, Tunisia
[2] Fac Sci, Dept Math, Computat Math Lab, Monastir 5000, Tunisia
[3] King Saud Univ, Coll Sci, Dept Math, Riyadh, Saudi Arabia
关键词
Holder regularity; Hausdorff dimension; multi-fractal formalism; wavelets; self similar functions; DIVERGENCE POINTS; SPECTRUM; SETS;
D O I
10.1142/S021969131450009X
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, a wavelet multifractal analysis is developed which permits to characterize simultaneous singularities for a vector of functions. An associated multifractal formalism is introduced and checked for the case of functions involving self similar aspects.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Multifractal formalism combined with multiresolution wavelet analysis of physiological signals
    Pavlova, O. N.
    Guyo, G. A.
    Pavlov, A. N.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (05): : 643 - 647
  • [12] Multifractal formalism combined with multiresolution wavelet analysis of physiological signals
    O. N. Pavlova
    G. A. Guyo
    A. N. Pavlov
    The European Physical Journal Special Topics, 2023, 232 : 643 - 647
  • [13] Characterizing cerebrovascular dynamics with the wavelet-based multifractal formalism
    Pavlov, A. N.
    Abdurashitov, A. S.
    Sindeeva, O. A.
    Sindeev, S. S.
    Pavlova, O. N.
    Shihalov, G. M.
    Semyachkina-Glushkovskaya, O. V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 442 : 149 - 155
  • [14] Analytic functions, singularities and edges: A new formalism
    Elfataoui, Mohamed
    Mirchandani, Gagan
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 1413 - 1416
  • [15] Multifractal formalism by enforcing the universal behavior of scaling functions
    Mukli, Peter
    Nagy, Zoltan
    Eke, Andras
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 417 : 150 - 167
  • [16] Multifractal formalism for selfsimilar functions expanded in singular basis
    Ben Slimane, M
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 11 (03) : 387 - 419
  • [17] Multifractal Formalism for Functions Part I: Results Valid for All Functions
    Jaffard, S.
    SIAM News, 1997, 28 (04):
  • [18] Multifractal formalism for functions .2. Self-similar functions
    Jaffard, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (04) : 971 - 998
  • [19] Multifractal formalism for functions .1. Results valid for all functions
    Jaffard, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (04) : 944 - 970
  • [20] Singularity spectrum of multifractal functions involving oscillating singularities
    A. Arneodo
    E. Bacry
    S. Jaffard
    J. F. Muzy
    Journal of Fourier Analysis and Applications, 1998, 4 : 159 - 174