Characterizing cerebrovascular dynamics with the wavelet-based multifractal formalism

被引:10
|
作者
Pavlov, A. N. [1 ,2 ]
Abdurashitov, A. S. [1 ]
Sindeeva, O. A. [3 ]
Sindeev, S. S. [3 ]
Pavlova, O. N. [1 ]
Shihalov, G. M. [1 ]
Semyachkina-Glushkovskaya, O. V. [3 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Phys, Saratov 410012, Russia
[2] Saratov State Tech Univ, Saratov 410054, Russia
[3] Saratov NG Chernyshevskii State Univ, Dept Biol, Saratov 410012, Russia
基金
俄罗斯科学基金会;
关键词
Multifractality; Wavelet transform; Cerebrovascular dynamics; Laser speckle contrast imaging; CEREBRAL-BLOOD-FLOW; SIGNALS; PRESSURE; TURBULENCE; STRESS; STROKE; UNIT;
D O I
10.1016/j.physa.2015.09.007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the wavelet-transform modulus maxima (WTMM) approach we study the dynamics of cerebral blood flow (CBF) in rats aiming to reveal responses of macro- and microcerebral circulations to changes in the peripheral blood pressure. We show that the wavelet-based multifractal formalism allows quantifying essentially different reactions in the CBF-dynamics at the level of large and small cerebral vessels. We conclude that unlike the macrocirculation that is nearly insensitive to increased peripheral blood pressure, the microcirculation is characterized by essential changes of the CBF-complexity. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 50 条
  • [1] Recognition of short-term changes in physiological signals with the wavelet-based multifractal formalism
    Pavlov, Alexey N.
    Sindeeva, Olga A.
    Sindeev, Sergey S.
    Pavlova, Olga N.
    Rybalova, Elena V.
    Semyachkina-Glushkovskaya, Oxana V.
    [J]. DYNAMICS AND FLUCTUATIONS IN BIOMEDICAL PHOTONICS XIII, 2016, 9707
  • [2] Characterization of ionospheric total electron content data using wavelet-based multifractal formalism
    Bhardwaj, Shivam
    Chandrasekhar, E.
    Seemala, Gopi K.
    Gadre, Vikram M.
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 134
  • [3] Sleep-stage characterization by nonlinear EEG analysis using wavelet-based multifractal formalism
    Ma, Qianli
    Ning, Xinbao
    Wang, Jun
    Li, Jing
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 4526 - 4529
  • [4] Morphological analysis of H I features. II. Wavelet-based multifractal formalism
    Khalil, A.
    Joncas, G.
    Nekka, F.
    Kestener, P.
    Arneodo, A.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2006, 165 (02): : 512 - 550
  • [5] WAVELET-BASED ANALYSIS OF CEREBROVASCULAR DYNAMICS IN NEWBORN RATS WITH INTRACRANIAL HEMORRHAGES
    Pavlov, Alexey N.
    Nazimov, Alexey I.
    Pavlova, Olga N.
    Lychagov, Vladislav V.
    Tuchin, Valery V.
    Bibikova, Olga A.
    Sindeev, Sergey S.
    Semyachkina-Glushkovskaya, Oxana V.
    [J]. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2014, 7 (01)
  • [6] Wavelet-Based Multifractal Analysis of Human Balance
    Carlos J. Morales
    Eric D. Kolaczyk
    [J]. Annals of Biomedical Engineering, 2002, 30 : 588 - 597
  • [7] Wavelet-based multifractal analysis of human balance
    Morales, CJ
    Kolaczyk, ED
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2002, 30 (04) : 588 - 597
  • [8] Wavelet-Based Multifractal Identification of Fracture Stages
    Aouit, Djedjiga Ait
    Ouahabi, Abdeldjalil
    [J]. DAMAGE AND FRACTURE MECHANICS: FAILURE ANALYSIS OF ENGINEERING MATERIALS AND STRUCTURES, 2009, : 513 - 522
  • [9] On the wavelet formalism for multifractal analysis
    Murguía, JS
    Urías, J
    [J]. CHAOS, 2001, 11 (04) : 858 - 863
  • [10] Wavelet-Based Multifractal Analysis to Periodic Time Series
    Chen, Changzheng
    Wang, Zhong
    Gou, Yi
    Zhao, Xinguang
    Miao, Hailing
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (01):