Symmetries of second-order systems of ODEs and integrability

被引:5
|
作者
Ayub, Muhammad [1 ]
Mahomed, F. M. [2 ]
Khan, Masood [3 ]
Qureshi, M. N. [4 ]
机构
[1] COMSATS Inst Informat Technol, Dept Math, Abbottabad, Pakistan
[2] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
[3] Quaid I Azam Univ, Dept Math, Islamabad, Pakistan
[4] Azad Jammu & Kashmir Univ, Dept Math, Muzaffarabad, Pakistan
基金
新加坡国家研究基金会;
关键词
Systems of ODEs; Canonical forms; Lie symmetries; Invariant representation; Integrability;
D O I
10.1007/s11071-013-1016-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We present a method for finding a complete set of kth-order (ka parts per thousand yen2) differential invariants including bases of invariants corresponding to vector fields in three variables of four-dimensional real Lie algebras. As a consequence, we provide a complete list of second-order differential invariants and canonical forms for vector fields of four-dimensional Lie algebras and their admitted regular systems of two second-order ODEs. Moreover, we classify invariant representations of these canonical forms of ODEs into linear, partial linear, uncoupled, and partial uncoupled cases. In addition, we give an integration procedure for invariant representations of canonical forms for regular systems of two second-order ODEs admitting four-dimensional Lie algebras.
引用
收藏
页码:969 / 989
页数:21
相关论文
共 50 条
  • [21] Computation of periodic solutions in perturbed second-order ODEs
    Navarro, Juan F.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) : 171 - 177
  • [22] The period function for second-order quadratic odes is monotone
    Gasull A.
    Guillamon A.
    Villadelprat J.
    Qualitative Theory of Dynamical Systems, 2004, 4 (2) : 329 - 352
  • [23] Multivalue-multistage Method for Second-order ODEs
    Ismail, Ainathon
    Rabiei, Faranak
    PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [24] Taylor Series Method for Second-Order Polynomial ODEs
    Latypov, Viktor
    Sokolov, Sergei
    2015 INTERNATIONAL CONFERENCE "STABILITY AND CONTROL PROCESSES" IN MEMORY OF V.I. ZUBOV (SCP), 2015, : 62 - 64
  • [25] Adaptive finite elements for a set of second-order ODEs
    Urban, Jakub
    Preinhaelter, Josef
    JOURNAL OF PLASMA PHYSICS, 2006, 72 (06) : 1041 - 1044
  • [26] Point equivalence of second-order ODEs: Maximal invariant classification order
    Milson, Robert
    Valiquette, Francis
    JOURNAL OF SYMBOLIC COMPUTATION, 2015, 67 : 16 - 41
  • [27] Equivalence and symmetries of second-order differential equations
    Tryhuk, V.
    Dlouhy, O.
    MATHEMATICA SLOVACA, 2008, 58 (05) : 541 - 566
  • [28] Linearizing Systems of Second-Order ODEs via Symmetry Generators Spanning a Simple Subalgebra
    Campoamor-Stursberg, R.
    Gueron, J.
    ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 105 - 115
  • [29] Linearizing Systems of Second-Order ODEs via Symmetry Generators Spanning a Simple Subalgebra
    R. Campoamor-Stursberg
    J. Guerón
    Acta Applicandae Mathematicae, 2013, 127 : 105 - 115
  • [30] SECOND-ORDER DIFFERENTIAL EQUATIONS: CONDITIONS OF COMPLETE INTEGRABILITY
    Leach, P. G. L.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) : 123 - 145