HIGHER ORDER CONFORMALLY INVARIANT EQUATIONS IN R3 WITH PRESCRIBED VOLUME

被引:2
|
作者
Hyder, Ali [1 ]
Wei, Juncheng [1 ]
机构
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
基金
瑞士国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Conformal metric; Q-curvature; large volume; negative exponent; higher order elliptic equation; NONLINEAR BIHARMONIC-EQUATIONS; 4TH-ORDER EQUATION; INTEGRAL-EQUATIONS; METRICS;
D O I
10.3934/cpaa.2019123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the following conformally invariant polyharmonic equation Delta(m)u = -u(3+2m/3-2m) in R-3, u > 0, with m = 2, 3. We prove the existence of positive smooth radial solutions with prescribed volume integral(R3) u(6/3-2m) dx. We show that the set of all possible values of the volume is a bounded interval (0,Lambda*] for m = 2, and it is (0,infinity) for m = 3. This is in sharp contrast to m = 1 case in which the volume integral(R3) u(6/3-2m) dx is a fixed value.
引用
收藏
页码:2781 / 2788
页数:8
相关论文
共 50 条