HIGHER ORDER CONFORMALLY INVARIANT EQUATIONS IN R3 WITH PRESCRIBED VOLUME
被引:2
|
作者:
Hyder, Ali
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Hyder, Ali
[1
]
Wei, Juncheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Wei, Juncheng
[1
]
机构:
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Conformal metric;
Q-curvature;
large volume;
negative exponent;
higher order elliptic equation;
NONLINEAR BIHARMONIC-EQUATIONS;
4TH-ORDER EQUATION;
INTEGRAL-EQUATIONS;
METRICS;
D O I:
10.3934/cpaa.2019123
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we study the following conformally invariant polyharmonic equation Delta(m)u = -u(3+2m/3-2m) in R-3, u > 0, with m = 2, 3. We prove the existence of positive smooth radial solutions with prescribed volume integral(R3) u(6/3-2m) dx. We show that the set of all possible values of the volume is a bounded interval (0,Lambda*] for m = 2, and it is (0,infinity) for m = 3. This is in sharp contrast to m = 1 case in which the volume integral(R3) u(6/3-2m) dx is a fixed value.
机构:
Univ Arkansas, Dept Math, Fayetteville, AR 72701 USAUniv Arkansas, Dept Math, Fayetteville, AR 72701 USA
Ding, Chao
Walter, Raymond
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Math, Fayetteville, AR 72701 USA
Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USAUniv Arkansas, Dept Math, Fayetteville, AR 72701 USA
Walter, Raymond
Ryan, John
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Math, Fayetteville, AR 72701 USAUniv Arkansas, Dept Math, Fayetteville, AR 72701 USA
机构:
Ctr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, SpainCtr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, Spain
Bueno, Antonio
Ortiz, Irene
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, SpainCtr Univ Def San Javier, Dept Ciencias, E-30729 Santiago De La Ribera, Spain
机构:
Penn State Univ, Dept Math, Ctr Computat Math & Applicat, University Pk, PA 16802 USAPenn State Univ, Dept Math, Ctr Computat Math & Applicat, University Pk, PA 16802 USA
Zheng, Bin
Hu, Qiya
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, LSEC, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R ChinaPenn State Univ, Dept Math, Ctr Computat Math & Applicat, University Pk, PA 16802 USA
Hu, Qiya
Xu, Jinchao
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, Ctr Computat Math & Applicat, University Pk, PA 16802 USAPenn State Univ, Dept Math, Ctr Computat Math & Applicat, University Pk, PA 16802 USA
机构:
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
Wei, Juncheng
Ye, Dong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
Univ Cergy Pontoise, UMR 8088, F-95302 Cergy Pontoise, FranceChinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China