On the computation of torus link homology

被引:20
|
作者
Elias, Ben [1 ]
Hogancamp, Matthew [2 ,3 ]
机构
[1] Univ Oregon, Dept Math, Fenton Hall, Eugene, OR 97403 USA
[2] Indiana Univ, Dept Math, 831 East 3rd St, Bloomington, IN 47405 USA
[3] Univ Southern Calif, Dept Math, 3620 S Vermont Ave,KAP 104, Los Angeles, CA 90089 USA
关键词
Khovanov-Rozansky homology; Soergel bimodules; torus links;
D O I
10.1112/S0010437X18007571
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new method for computing triply graded link homology, which is particularly well adapted to torus links. Our main application is to the(n, n)-torus links, for which we give an exact answer for all n. In several cases, our computations verify conjectures of Gorsky et al. relating homology of torus links with Hilbert schemes.
引用
收藏
页码:164 / 205
页数:42
相关论文
共 50 条
  • [11] On the Knot Floer Homology of Twisted Torus Knots
    Vafaee, Faramarz
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (15) : 6516 - 6537
  • [12] Hochschild and cyclic homology of the quantum multiparametric torus
    Wambst, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 114 (03) : 321 - 329
  • [13] KNOT HOMOLOGY OF (3, m) TORUS KNOTS
    Gillam, William D.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (08)
  • [14] Link cobordisms and functoriality in link Floer homology
    Zemke, Ian
    JOURNAL OF TOPOLOGY, 2019, 12 (01) : 94 - 220
  • [15] Computation of homology groups and generators
    Peltier, S
    Alayrangues, S
    Fuchs, L
    Lachaud, JO
    COMPUTERS & GRAPHICS-UK, 2006, 30 (01): : 62 - 69
  • [16] Computation of homology groups and generators
    Peltier, S
    Alayrangues, S
    Fuchs, L
    Lachaud, JO
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2005, 3429 : 195 - 205
  • [17] The computation of electromagnetic field on torus knots
    Luo, Jianshu
    Zhang, Xufeng
    PIERS 2008 CAMBRIDGE, PROCEEDINGS, 2008, : 353 - 360
  • [18] A roadmap for the computation of persistent homology
    Otter, Nina
    Porter, Mason A.
    Tillmann, Ulrike
    Grindrod, Peter
    Harrington, Heather A.
    EPJ DATA SCIENCE, 2017, 6
  • [19] Parallel Homology Computation of Meshes
    Damiand, Guillaume
    Gonzalez-Diaz, Rocio
    COMPUTATIONAL TOPOLOGY IN IMAGE CONTEXT, CTIC 2016, 2016, 9667 : 53 - 64
  • [20] A roadmap for the computation of persistent homology
    Nina Otter
    Mason A Porter
    Ulrike Tillmann
    Peter Grindrod
    Heather A Harrington
    EPJ Data Science, 6