KNOT HOMOLOGY OF (3, m) TORUS KNOTS

被引:0
|
作者
Gillam, William D. [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
Khovanov knot homology; torus knot;
D O I
10.1142/S0218216512500721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a direct computation of the Khovanov knot homology of the (3, m) torus knots/links. Our computation yields complete results with Z[1/2] coefficients, though we leave a slight ambiguity concerning 2-torsion when integer coefficients are used. Our computation uses only the basic long exact sequence in knot homology and Rasmussen's result on the triviality of the embedded surface invariant.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] On the Knot Floer Homology of Twisted Torus Knots
    Vafaee, Faramarz
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (15) : 6516 - 6537
  • [2] KNOT CONTACT HOMOLOGY DETECTS CABLED, COMPOSITE, AND TORUS KNOTS
    Gordon, Cameron
    Lidman, Tye
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (12) : 5405 - 5412
  • [3] Homology of torus knots
    Mellit, Anton
    GEOMETRY & TOPOLOGY, 2022, 26 (01) : 47 - 70
  • [4] On Stable sl3-Homology of Torus Knots
    Gorsky, Eugene
    Lewark, Lukas
    EXPERIMENTAL MATHEMATICS, 2015, 24 (02) : 162 - 174
  • [5] Knot types of twisted torus knots
    Lee, Sangyop
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (12)
  • [6] On Stable Khovanov Homology of Torus Knots
    Gorsky, Eugene
    Oblomkov, Alexei
    Rasmussen, Jacob
    EXPERIMENTAL MATHEMATICS, 2013, 22 (03) : 265 - 281
  • [7] Equivariant knots and knot Floer homology
    Dai, Irving
    Mallick, Abhishek
    Stoffregen, Matthew
    JOURNAL OF TOPOLOGY, 2023, 16 (03) : 1167 - 1236
  • [8] INCOMPRESSIBLE SURFACES IN THE KNOT MANIFOLDS OF TORUS KNOTS
    TSAU, CM
    TOPOLOGY, 1994, 33 (01) : 197 - 201
  • [9] Filtrations on the knot contact homology of transverse knots
    Ekholm, Tobias
    Etnyre, John
    Ng, Lenhard
    Sullivan, Michael
    MATHEMATISCHE ANNALEN, 2013, 355 (04) : 1561 - 1591
  • [10] A note on the knot Floer homology of fibered knots
    Baldwin, John A.
    Vela-Vick, David Shea
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (06): : 3669 - 3690