A new multicollinearity diagnostic for generalized linear models

被引:7
|
作者
Huang, Chien-Chia L. [1 ]
Jou, Yow-Jen [2 ]
Cho, Hsun-Jung [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Transportat & Logist Management, Hsinchu, Taiwan
[2] Natl Chiao Tung Univ, Dept Informat Management & Finance, Hsinchu, Taiwan
关键词
Collinearity; condition number; diagnostic; generalized linear models; variance inflation factor; LOGISTIC-REGRESSION; RIDGE; COLLINEARITY; ESTIMATORS;
D O I
10.1080/02664763.2015.1126239
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new collinearity diagnostic tool for generalized linear models. The new diagnostic tool is termed the weighted variance inflation factor (WVIF) behaving exactly the same as the traditional variance inflation factor in the context of regression diagnostic, given data matrix normalized. Compared to the use of condition number (CN), WVIF shows more reliable information on how severe the situation is, when data collinearity does exist. An alternative estimator, a by-product of the new diagnostic, outperforms the ridge estimator in the presence of data collinearity in both aspects of WVIF and CN. Evidences are given through analyzing various real-world numerical examples.
引用
收藏
页码:2029 / 2043
页数:15
相关论文
共 50 条
  • [31] Hierarchical generalized linear models
    Lee, Y
    Nelder, JA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (04): : 619 - 656
  • [32] Holistic Generalized Linear Models
    Schwendinger, Benjamin
    Schwendinger, Florian
    Vana, Laura
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2024, 108 (07): : 1 - 49
  • [33] Sparsifying Generalized Linear Models
    Jambulapati, Arun
    Lee, James R.
    Liu, Yang P.
    Sidford, Aaron
    [J]. PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1665 - 1675
  • [34] Generalized Weibull Linear Models
    Prudente, Andrea A.
    Cordeiro, Gauss M.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (20) : 3739 - 3755
  • [35] A tutorial on generalized linear models
    Myers, RH
    Montgomery, DC
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 1997, 29 (03) : 274 - 291
  • [36] Generalized Linear Rule Models
    Wei, Dennis
    Dash, Sanjeeb
    Gao, Tian
    Gunluk, Oktay
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [37] GENERALIZED LINEAR-MODELS
    HILBE, JM
    [J]. AMERICAN STATISTICIAN, 1994, 48 (03): : 255 - 265
  • [38] Generalized functional linear models
    Müller, HG
    Stadtmüller, U
    [J]. ANNALS OF STATISTICS, 2005, 33 (02): : 774 - 805
  • [39] GENERALIZED LINEAR-MODELS
    MCCULLAGH, P
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1984, 16 (03) : 285 - 292
  • [40] Overdispersed generalized linear models
    Dey, DK
    Gelfand, AE
    Peng, FC
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 64 (01) : 93 - 107