STOCHASTIC ANALYSIS ON SUB-RIEMANNIAN MANIFOLDS WITH TRANSVERSE SYMMETRIES

被引:9
|
作者
Baudoin, Fabrice [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
来源
ANNALS OF PROBABILITY | 2017年 / 45卷 / 01期
基金
美国国家科学基金会;
关键词
Sample; Brownian motion; sub-Riemannian manifold; Bochner-Weitzenbock formula; CURVATURE-DIMENSION INEQUALITY; HYPOELLIPTIC HEAT-KERNEL; HEISENBERG-GROUP; OPERATORS; GRADIENT; GEOMETRY; BUNDLES;
D O I
10.1214/14-AOP964
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a geometrically meaningful stochastic representation of the derivative of the heat semigroup on sub-Riemannian manifolds with tranverse symmetries. This representation is obtained from the study of Bochner-Weitzenbock type formulas for sub-Laplacians on 1-forms. As a consequence, we prove new hypoelliptic heat semigroup gradient bounds under natural global geometric conditions. The results are new even in the case of the Heisenberg group which is the simplest example of a sub-Riemannian manifold with transverse symmetries
引用
收藏
页码:56 / 81
页数:26
相关论文
共 50 条
  • [41] Sub-Riemannian Geometry and Geodesics in Banach Manifolds
    Sylvain Arguillère
    [J]. The Journal of Geometric Analysis, 2020, 30 : 2897 - 2938
  • [42] A topological splitting theorem for sub-Riemannian manifolds
    Kazuki Itoh
    [J]. Geometriae Dedicata, 2014, 168 : 177 - 196
  • [43] Measures of transverse paths in sub-Riemannian geometry
    Elisha Falbel
    Frédéric Jean
    [J]. Journal d’Analyse Mathématique, 2003, 91 : 231 - 246
  • [44] Measures of transverse paths in sub-Riemannian geometry
    Falbel, E
    Jean, F
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2003, 91 (1): : 231 - 246
  • [45] Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds
    Hassannezhad, Asma
    Kokarev, Gerasim
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 16 (04) : 1049 - 1092
  • [46] DIFFUSION IN SMALL TIME IN INCOMPLETE SUB-RIEMANNIAN MANIFOLDS
    Bailleul, Ismael
    Norris, James
    [J]. ANALYSIS & PDE, 2022, 15 (01): : 63 - 84
  • [47] Surface measure on, and the local geometry of, sub-Riemannian manifolds
    Don, Sebastiano
    Magnani, Valentino
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (09)
  • [48] Carnot rectifiability of sub-Riemannian manifolds with constant tangent
    Le Donne, Enrico
    Young, Robert
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (01) : 71 - 96
  • [49] CORNERS IN NON-EQUIREGULAR SUB-RIEMANNIAN MANIFOLDS
    Le Donne, Enrico
    Leonardi, Gian Paolo
    Monti, Roberto
    Vittone, Davide
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (03) : 625 - 634
  • [50] Existence of isoperimetric regions in contact sub-Riemannian manifolds
    Galli, Matteo
    Ritore, Manuel
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) : 697 - 714