We show that if M is a sub-Riemannian manifold and N is a Carnot group such that the nilpotentization of M at almost every point is isomorphic to N, then there are subsets of N of positive measure that embed into M by biLipschitz maps. Furthermore, M is countably N-rectifiable, i.e., all of M except for a null set can be covered by countably many such maps.