STOCHASTIC ANALYSIS ON SUB-RIEMANNIAN MANIFOLDS WITH TRANSVERSE SYMMETRIES

被引:9
|
作者
Baudoin, Fabrice [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
来源
ANNALS OF PROBABILITY | 2017年 / 45卷 / 01期
基金
美国国家科学基金会;
关键词
Sample; Brownian motion; sub-Riemannian manifold; Bochner-Weitzenbock formula; CURVATURE-DIMENSION INEQUALITY; HYPOELLIPTIC HEAT-KERNEL; HEISENBERG-GROUP; OPERATORS; GRADIENT; GEOMETRY; BUNDLES;
D O I
10.1214/14-AOP964
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a geometrically meaningful stochastic representation of the derivative of the heat semigroup on sub-Riemannian manifolds with tranverse symmetries. This representation is obtained from the study of Bochner-Weitzenbock type formulas for sub-Laplacians on 1-forms. As a consequence, we prove new hypoelliptic heat semigroup gradient bounds under natural global geometric conditions. The results are new even in the case of the Heisenberg group which is the simplest example of a sub-Riemannian manifold with transverse symmetries
引用
收藏
页码:56 / 81
页数:26
相关论文
共 50 条