Stochastic completeness and volume growth in sub-Riemannian manifolds

被引:4
|
作者
Munive, Isidro H. [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
关键词
EQUATIONS; ORDER;
D O I
10.1007/s00229-011-0493-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we generalize A. Grigor'yan's volume test for the stochastic completeness of a Riemannian manifold to a sub-Riemannian setting. As an application of this result, and of a new estimate of the growth of the volume of the metric balls at infinity, we give a different proof of (and extend) a theorem in Baudoin and Garofalo (Arxiv preprint, submitted paper, 2009) stating that when a smooth, complete and connected manifold satisfies the generalized curvature-dimension inequality introduced in that paper, then the manifold turns out to be stochastically complete.
引用
收藏
页码:299 / 313
页数:15
相关论文
共 50 条
  • [1] Stochastic completeness and volume growth in sub-Riemannian manifolds
    Isidro H. Munive
    [J]. Manuscripta Mathematica, 2012, 138 : 299 - 313
  • [2] Stochastic Completeness and Gradient Representations for Sub-Riemannian Manifolds
    Grong, Erlend
    Thalmaier, Anton
    [J]. POTENTIAL ANALYSIS, 2019, 51 (02) : 219 - 254
  • [3] Stochastic Completeness and Gradient Representations for Sub-Riemannian Manifolds
    Erlend Grong
    Anton Thalmaier
    [J]. Potential Analysis, 2019, 51 : 219 - 254
  • [4] On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds
    Tan, KH
    Yang, XP
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 177 - 198
  • [5] Cartan Connections for Stochastic Developments on sub-Riemannian Manifolds
    Beschastnyi, Ivan
    Habermann, Karen
    Medvedev, Alexandr
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [6] Cartan Connections for Stochastic Developments on sub-Riemannian Manifolds
    Ivan Beschastnyi
    Karen Habermann
    Alexandr Medvedev
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [7] STOCHASTIC ANALYSIS ON SUB-RIEMANNIAN MANIFOLDS WITH TRANSVERSE SYMMETRIES
    Baudoin, Fabrice
    [J]. ANNALS OF PROBABILITY, 2017, 45 (01): : 56 - 81
  • [8] Volume and distance comparison theorems for sub-Riemannian manifolds
    Baudoin, Fabrice
    Bonnefont, Michel
    Garofalo, Nicola
    Munive, Isidro H.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) : 2005 - 2027
  • [9] Hausdorff volume in non equiregular sub-Riemannian manifolds
    Ghezzi, R.
    Jean, F.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 126 : 345 - 377
  • [10] Holonomy of sub-Riemannian manifolds
    Falbel, E
    Gorodski, C
    Rumin, M
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (03) : 317 - 344