Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality

被引:219
|
作者
Maiti, A
Svizhenko, A
Anantram, MP
机构
[1] Accelrys Inc, San Diego, CA 92121 USA
[2] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
D O I
10.1103/PhysRevLett.88.126805
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Atomistic simulations using a combination of classical force field and density-functional theory (DFT) show that carbon atoms remain essentially sp(2) coordinated in either bent tubes or tubes pushed by an atomically sharp atomic-force microscope (AFM) tip. Subsequent Green's-function-based transport calculations reveal that for armchair tubes there is no significant drop in conductance, while for zigzag tubes the conductance can drop by several orders of magnitude in AFM-pushed tubes. The effect can be attributed to simple stretching of the tube under tip deformation, which opens up an energy gap at the Fermi surface.
引用
收藏
页码:4 / 126805
页数:4
相关论文
共 50 条
  • [21] Electronic transport through single-wall nicked carbon nanotubes
    Ren, W
    Wang, J
    PHYSICAL REVIEW B, 2004, 69 (03)
  • [22] Theoretical studies of quantum interference in electronic transport through carbon nanotubes
    Babiaczyk, WI
    Bulka, BR
    ACTA PHYSICA POLONICA A, 2002, 102 (4-5) : 597 - 602
  • [23] Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches
    Farajian, AA
    Yakobson, BI
    Mizuseki, H
    Kawazoe, Y
    PHYSICAL REVIEW B, 2003, 67 (20)
  • [24] Electronic transport through superlattice-like disordered carbon nanotubes
    Khoeini, F.
    Shokri, A. A.
    Farman, H.
    SOLID STATE COMMUNICATIONS, 2009, 149 (21-22) : 874 - 879
  • [25] Quantum mechanical methods for the simulation of electronic transport through carbon nanotubes
    Zienert, A.
    Schuster, J.
    Streiter, R.
    Gessner, T.
    2011 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE AND MATERIALS FOR ADVANCED METALLIZATION (IITC/MAM), 2011,
  • [26] Hydrostatic pressure effects on the structural and electronic properties of carbon nanotubes
    Capaz, RB
    Spataru, CD
    Tangney, P
    Cohen, ML
    Louie, SG
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (14): : 3352 - 3359
  • [27] Electronic states and transport in carbon nanotubes
    Ando, T
    NANO-PHYSICS & BIO-ELECTRONICS: A NEW ODYSSEY, 2002, : 1 - 64
  • [28] ELECTRONIC TRANSPORT PROPERTIES IN CARBON NANOTUBES
    Bellucci, S.
    CAS: 2008 INTERNATIONAL SEMICONDUCTOR CONFERENCE, PROCEEDINGS, 2008, : 15 - 24
  • [29] Electronic transport in bent carbon nanotubes
    Kleinherbers, Eric
    Stegmann, Thomas
    Szpak, Nikodem
    PHYSICAL REVIEW B, 2023, 107 (19)
  • [30] Catalyst and Chirality Dependent Growth of Carbon Nanotubes Determined Through Nano-Test Tube Chemistry
    Shiozawa, Hidetsugu
    Kramberger, Christian
    Pfeiffer, Rudolf
    Kuzmany, Hans
    Pichler, Thomas
    Liu, Zheng
    Suenaga, Kazu
    Kataura, Hiromichi
    Silva, S. Ravi P.
    ADVANCED MATERIALS, 2010, 22 (33) : 3685 - +