The method of stochastic dynamics in the Wigner formulation of quantum mechanics

被引:0
|
作者
Kamskii, VL
MEdvedev, YV
Filinov, VS
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new method for the numerical solution of the Wigner-Liouville equation in the Wigner formulation of quantum mechanics is explained. The method combines two classical approaches: the method of molecular dynamics and the Monte Carlo method. Results of test calculations for one-, two- and three-dimensional systems are compared with analytic solutions. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:923 / 934
页数:12
相关论文
共 50 条
  • [31] Wigner Measures in Noncommutative Quantum Mechanics
    Bastos, C.
    Dias, N. C.
    Prata, J. N.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 299 (03) : 709 - 740
  • [32] QUANTUM-MECHANICS AS A GENERALIZATION OF NAMBU DYNAMICS TO THE WEYL-WIGNER FORMALISM
    BIALYNICKIBIRULA, I
    MORRISON, PJ
    PHYSICS LETTERS A, 1991, 158 (09) : 453 - 457
  • [33] A NEW FORMULATION OF STOCHASTIC MECHANICS
    PAVON, M
    PHYSICS LETTERS A, 1995, 209 (3-4) : 143 - 149
  • [34] Quantum generalization of molecular dynamics method. Wigner approach
    Filinov, V
    Bonitz, M
    Fortov, V
    Levashov, P
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 2, 2004, 3044 : 402 - 411
  • [35] Quantum mechanics emerging from stochastic dynamics of virtual particles
    Tsekov, Roumen
    EMQM15: EMERGENT QUANTUM MECHANICS 2015, 2016, 701
  • [36] A STOCHASTIC DYNAMICS APPROACH TO QUANTUM BOLTZMANN STATISTICAL-MECHANICS
    LAMM, G
    JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (02): : 986 - 1000
  • [37] A relativistic formulation of the de la Pena-Cetto stochastic quantum mechanics
    Gonzalez Lezcano, A.
    Montes de Oca, A. Cabo
    REVISTA MEXICANA DE FISICA, 2018, 64 (02) : 158 - 171
  • [38] Solving the hydrodynamic formulation of quantum mechanics: A parallel MLS method
    Brook, RG
    Oppenheimer, PE
    Weatherford, CA
    Banicescu, I
    Zhu, JP
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2001, 85 (4-5) : 263 - 271
  • [39] On the Stochastic Mechanics Foundation of Quantum Mechanics
    Beyer, Michael
    Paul, Wolfgang
    UNIVERSE, 2021, 7 (06)
  • [40] Supersymmetric Wigner-Dunkl quantum mechanics
    Dong, Shi-Hai
    Chung, Won Sang
    Junker, Georg
    Hassanabadi, Hassan
    RESULTS IN PHYSICS, 2022, 39